Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.33 *Printed on 10 March 2021 at 09:53:57*

Project Informatio	on:			
Assessed By:	Natalie King (STF	RO034719)	Building Type:	End-terrace House
Dwelling Details:				
NEW DWELLING	DESIGN STAGE		Total Floor Area: 7	6m²
Site Reference :	Lavant View - The	e Spires, Chichester	Plot Reference:	112 Tavy [End] DCC4
Address :	Tavy [End]			
Client Details:				
Name: Address :	Redrow Homes S	outhern Counties Limited		
•		vithin the SAP calculations. tions compliance.		
1a TER and DER				
	ing system: Mains g	jas		
Fuel factor: 1.00 (n	• /		$19.01 kg/m^2$	
-	xide Emission Rate Pioxide Emission Ra	. ,	18.91 kg/m² 18.13 kg/m²	ОК
1b TFEE and DF			10.10 kg/m	UN
Target Fabric Ener	gy Efficiency (TFEI	Ξ)	51.4 kWh/m²	
Dwelling Fabric En	ergy Efficiency (DF	EE)	45.4 kWh/m ²	
				OK
2 Fabric U-value	S			
Element	- 11	Average	Highest	01/
External v		0.28 (max. 0.30) 0.00 (max. 0.20)	0.28 (max. 0.70)	OK OK
Party wall Floor	I	0.00 (max. 0.20) 0.17 (max. 0.25)	- 0.17 (max. 0.70)	OK
Roof		0.12 (max. 0.20)	0.21 (max. 0.35)	OK
Openings	;	1.23 (max. 2.00)	1.50 (max. 3.30)	OK
2a Thermal bridg			, , , , , , , , , , , , , , , , , , ,	
Thermal b	oridging calculated	from linear thermal transmittan	ces for each junction	
3 Air permeabilit	iy			
	pility at 50 pascals		5.01 (design val	
Maximum			10.0	OK
4 Heating efficie	ncy			
Main Heatin	ig system:	Database: (rev 473, produc	t index 017929):	
		Boiler systems with radiator Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35 (Combi) Efficiency 89.6 % SEDBUK Minimum 88.0 %		ains gas OK
Secondary I	heating system:	None		

Regulations Compliance Report

Cylinder insulation			
Hot water Storage:	No cylinder		
Controls			
Space heating controls	Programmer, room therm	nostat and TRVs	OK
Hot water controls:	No cylinder thermostat		
	No cylinder		
Boiler interlock:	Yes		OK
Low energy lights			
Percentage of fixed lights w	ith low-energy fittings	100.0%	
Minimum		75.0%	OK
Mechanical ventilation			
Not applicable			
Summertime temperature			
Overheating risk (South Ea	st England):	Not significant	OK
sed on:			
Overshading:		Average or unknown	
Windows facing: North Eas	t	3.55m ²	
Windows facing: South We	st	3.12m ²	
Ventilation rate:		8.00	
Blinds/curtains:		None	
) Key features			
Thermal bridging		0.029 W/m²K	
Doors U-value		1.1 W/m²K	
Roofs U-value		0.11 W/m²K	

Code for Sustainable Homes Report

For use with Nov 2010 addendum 2014 England

Assessor and House Details											
Assessor Name: Property Address:	Natalie King Tavy [End]	Assessor Number:	STRO034719								
Buiding regulation assessment											
			kg/m²/year								
TER			18.91								
DER			18.13								
ENE 1 Assessment - I	Dwelling Emission Rate										

Total Energy Type CO. Emissions for Codes Levels 1 - 5

Total Lifergy Type 002 Lifestons for Codes Levels 1-5	%	kg/m²/year	
DER from SAP 2012 DER Worksheet		18.13	(ZC1)
TER		18.91	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		18.13	
% improvement DER/TER	4.1		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	18.13	(ZC1)
CO2 emissions from appliances, equation (L14)	16.38	(ZC2)
CO2 emissions from cooking, equation (L16)	2.32	(ZC3)
Net CO2 emissions	38.9	(ZC8)

Result:

Credits awarded for ENE 1 = 0.6

Code Level = 3

ENE 2 - Fabric energy Efficiency

Fabric energy Efficiency: 45.37

Credits awarded for ENE 2 = 7.2

ENE 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	
Standard Case CO2 emissions		38.92	
Standard DER		20.22	
Actual Case CO2 emissions		38.92	
Actual DER		20.22	
Reduction in CO2 emissions	0		

Credits awarded for ENE 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.

• Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.

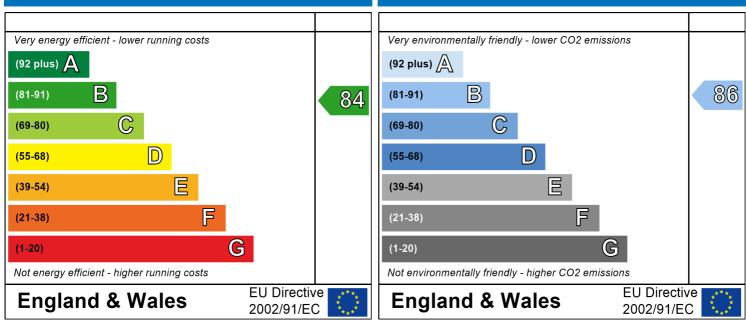
• Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.

• All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

Tavy [End]


Dwelling type: Date of assessment: Produced by: Total floor area: End-terrace House 08 November 2019 Natalie King 76 m²

Environmental Impact (CO₂) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

Energy Efficiency Rating

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: 11	2 Tavy [End] [DCC4							
Address:		Таvу	[End]						
Located in:		England							
Region: UPRN:		Sout	h East England						
Date of assessme	≏nt·	08 N	ovember 2019						
Date of certificat			larch 2021						
Assessment type	2:	New	dwelling design stag	e					
Transaction type	:		dwelling						
Tenure type:			nown Ioyed by the professi	onal doaling with	the property tra	insaction			
Related party dis Thermal Mass Pa		•	ulated 141.33	ulai uealing witi		IIISaction			
Water use <= 12		son/day:	True						
PCDF Version:	·	473							
Property description	1:								
Dwelling type:		Hous	Se						
Detachment:			terrace						
Year Completed:		2021							
Floor Location:		Floo	or area:						
					Storey height	•			
Floor 0		38 m			2.31 m				
Floor 1		38 m	ן ²		2.61 m				
Living area: Front of dwelling fa	aces:		8 m ² (fraction 0.263 h East)					
Opening types:									
Name:	Source:		Туре:	Glazing:		Argon:	Fram	ne:	
Door	Manufacturer		Solid		0.2, hard coat	Yes	PVC-L		
Rear	Manufacturer Manufacturer		Half glazed Windows		0.2, hard coat	Yes Yes	PVC-L		
Front Rear	Manufacturer		Windows		0.2, hard coat	Yes			
						100			
Name:	Gap:			-		Area:		of Openings:	
Door Rear		r more mm r more mm	0.7 0.7	0.72 0.72	1.1 1.5	2.06 1.91	1 1		
Front	16mm o		0.7	0.76	1.2	3.55	1		
Rear	16mm o		0.7	0.76	1.2	3.12	1		
Name: Door	Type-Nam	e:	Location: Walls	Orient: North East		Width: 0	Heig 0	ht:	
Rear			Walls	South West		0	0		
Front			Walls	North East		0	0		
Rear			Walls	South West		0	0		
Overshading:		Aver	age or unknown						
Opaque Elements:									
51	Gross area:	Openings	: Net area:	U-value:	Ru value:	Curtain	wall:	Kappa:	
External Elements Walls	82.5	10.64	71.86	0.28	0	False		48	
Sloping	5.62	0	5.62	0.20	0			40 9	
Plane ceiling	33.37	0	33.37	0.11	0			9	
Floor	38			0.17				75	
Internal Elements Stud	125.28							9	
วเนน	120.20							7	

SAP Input

Ceiling	38		9
Floor	38		18
Party Elements			
Party Wall	40.36		48

Thermal bridges:

Thermal bridges:	User-define	d (individual P	SI-values)	Y-Value = 0.0286
	Length	Psi-value		
	4.3	0.236	E1	Steel lintel with perforated steel base plate
	6.79	0.01	E3	Sill
	18.3	0.005	E4	Jamb
	17.4	0.058	E5	Ground floor (normal)
	17.4	-0.002	E6	Intermediate floor within a dwelling
	9.14	0.041	E18	Party wall between dwellings
	9.14	0.051	E16	Corner (normal)
	9.22	0.017	E11	Eaves (insulation at rafter level)
	7.24	0.057	E12	Gable (insulation at ceiling level)
[Approved]	1.22	0.04	E13	Gable (insulation at rafter level)
	4.38	0.064	E2	Other lintels (including other steel lintels)
	8.24	0.043	P1	Ground floor
	7.24	0.035	P4	Roof (insulation at ceiling level)
	1.22	0.058	P5	Roof (insulation at rafter level)

Ventilation:	
Pressure test: Ventilation: Number of chimneys: Number of open flues: Number of fans: Number of passive stacks: Number of sides sheltered: Pressure test:	Yes (As designed) Natural ventilation (extract fans) 0 0 3 0 2 5.01
Main heating system:	
Main heating system:	Boiler systems with radiators or underfloor heating Gas boilers and oil boilers Fuel: mains gas Info Source: Boiler Database Database: (rev 473, product index 017929) Efficiency: Winter 87.3 % Summer: 90.5 Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35 (Combi boiler) Systems with radiators Central heating pump : 2013 or later Design flow temperature: Design flow temperature >45°C Boiler interlock: Yes Delayed start
Main heating Control:	
Main heating Control:	Programmer, room thermostat and TRVs Control code: 2106
Secondary heating system:	
Secondary heating system: Water heating:	None
Water heating:	From main heating system Water code: 901

SAP Input

Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home: Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English No None No

User Details:												
Assessor Name: Software Name:	2		Strom Softwa	0034719 on: 1.0.5.33								
	-			Pi	operty	Address	: 112 Ta	vy [End]	DCC4			
Address : Tavy [End] 1. Overall dwelling dimensions:												
1. Overall dwelling di	mension	S:			•	(0)						
Ground floor					Are	a(m²)	(4-2)	Av. He	• • •		Volume(m ³)	
						38	(1a) x	2	.31	(2a) =	87.78	(3a)
First floor						38	(1b) x	2	.61	(2b) =	99.18	(3b)
Total floor area TFA =	(1a)+(1	o)+(1c)+((1d)+(1e	e)+(1n)	76	(4)					
Dwelling volume					L		(3a)+(3b))+(3c)+(3d)+(3e)+	.(3n) =	186.96	(5)
2. Ventilation rate:												
		main heating		econdar leating	У	other		total			m ³ per hour	
Number of chimneys	ſ	0] + [0] + [0] = [0	x 4	40 =	0	(6a)
Number of open flues	Г	0	 +	0] + [0] = [0	x 2	20 =	0	(6b)
Number of intermittent	⊥ ⊥fans							3	x 1	10 =	30	(7a)
Number of passive ve	nts							0	x 1	10 =	0	(7b)
Number of flueless ga								-	x 4	40 =		1
number of nucless ga	5 1165						L	0	^		0	(7c)
										Air ch	nanges per hou	r
Infiltration due to chim	neys, flu	es and fa	ans = (6	a)+(6b)+(7	a)+(7b)+((7c) =	Г	30	<u> </u>	÷ (5) =	0.16	(8)
If a pressurisation test ha	s been ca	rried out oi	r is intende	ed, proceed	l to (17),	otherwise o	continue fr			. ,		1. ,
Number of storeys i	n the dw	elling (ns	5)								0	(9)
Additional infiltration	l								[(9)-	-1]x0.1 =	0	(10)
Structural infiltration	: 0.25 fo	r steel or	r timber f	frame or	0.35 fo	r masoni	ry constr	ruction			0	(11)
if both types of wall ar deducting areas of op				ponding to	the grea	ter wall are	a (after					
If suspended woode	0 //			ed) or 0.	1 (seale	ed), else	enter 0				0	(12)
If no draught lobby,	enter 0.0)5, else e	enter 0	,	,	,.					0	(13)
Percentage of winde	ows and	doors dr	aught st	ripped							0	(14)
Window infiltration						0.25 - [0.2	2 x (14) ÷ 1	= [00			0	(15)
Infiltration rate						(8) + (10)	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability valu	ie, q50, (expresse	ed in cub	oic metre	s per ho	our per s	quare m	etre of e	nvelope	area	5.01000022888184	(17)
If based on air permea	bility val	ue, then	(18) = [(1	7) ÷ 20]+(8), otherw	ise (18) = ((16)				0.41	(18)
Air permeability value ap		ressurisatio	on test has	s been don	e or a de	gree air pe	rmeability	is being us	sed			,
Number of sides shelt Shelter factor	ered					(20) = 1 -	[0 075 x (1	9)1 -			2	(19)
Infiltration rate incorpo	rating sh	altar fac	tor			(20) = 1 (21) = (18)		[0]] –			0.85	(20)
Infiltration rate modifie	•			4		(21) = (10	, , (20) -				0.35	(21)
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
		· · · ·			Jui	I Aug					J	
Monthly average wind (22)m= 5.1 5	speed fi		e / 4.3	20	3.8	3.7	4	4.3	4.5	4.7	1	
(22)m= 5.1 5	4.9	4.4	4.3	3.8	3.0	<u>ا ، ، /</u>	4	4.3	4.0	4.7		

Wind F	actor (2	22a)m =	(22)m ÷	- 4										
(22a)m=	1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
Adjust	ed infiltra	ation rat	e (allow	ing for sł	nelter an	d wind s	speed) =	= (21a) x	(22a)m					
•	0.45	0.44	0.43	0.38	0.38	0.33	0.33	0.32	0.35	0.38	0.39	0.41		
			-	rate for t	he appli	cable ca	se							
	echanica			andix NL (2)))))))))))))))))))		acuation (muiae (02k	x) (22a)			0	(23a)
			• • •	endix N, (2	, ,	, ,) = (23a)			0	(23b)
			-	ciency in %	-					0h)	(00k) [1 (00-)	0	(23c)
(24a)m=									a = (2	20)m + (0	23D) × [1 – (23c) 0	÷ 100]	(24a)
	-		I	I ^o entilation	_				I			0		(244)
(24b)m=								0	0 1 0		0	0		(24b)
				ntilation of					_	Ů	Ů	ů		(/
,				then (24	•	•				.5 × (23	c)			
(24c)m=		0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilati	on or wh	nole hous	se positiv	ve input	ventilati	on from	loft					
i	if (22b)n	n = 1, th	en (24d))m = (22l	b)m othe	erwise (2	24d)m =	0.5 + [(2	2b)m² x	0.5]			I	
(24d)m=	0.6	0.6	0.59	0.57	0.57	0.56	0.56	0.55	0.56	0.57	0.58	0.58		(24d)
			· · · · · ·	nter (24a	í .	ŕ	<u>, ,</u>	· · · · · · · · · · · · · · · · · · ·	x (25)				I	
(25)m=	0.6	0.6	0.59	0.57	0.57	0.56	0.56	0.55	0.56	0.57	0.58	0.58		(25)
3. He	at losse	s and he	eat loss	paramet	er:									
ELEN	IENT	Gro: area	ss (m²)	Openin rr	-	Net Ar A ,r		U-val W/m2		A X U (W/		k-value kJ/m²⋅ł		∖Xk J/K
Doors	Type 1					2.06	x	1.1	=	2.266				(26)
Doors	Type 2					1.91	x	1.5	=	2.865				(26)
Windo	ws Type	e 1				3.55	x1	/[1/(1.2)+	0.04] =	4.06				(27)
Windo	ws Type	2				3.12		/[1/(1.2)+	0.04] =	3.57				(27)
Floor						38	x	0.17	_ =	6.46	= 1	75	285	0 (28)
Walls		82.	5	10.6	4	71.86	3 X	0.28	=	20.12	= i	48	3449.	.28 (29)
Roof T	Гуре1	5.6	2	0		5.62	x	0.21	=	1.18		9	50.5	8 (30)
Roof 7	Гуре2	33.3	37	0		33.37	7 X	0.11		3.67		9	300.3	
Total a	area of e	lements	s, m²	L		159.4	9	L			((31)
Party v	vall					40.36		0		0		48	1937.	
	al wall **					125.2					I	9	1127.	
Interna						38					ו [18	684	=
	al ceiling	1				38					l I	9	342	
	-		lows, use e	effective wi	indow U-va		 lated using	g formula 1	1/[(1/U-valu	ue)+0.04] a	as given in	9 n paragraph		
				nternal wal	ls and par	titions		(00) (00				1		
⊦abric	heat los	s, W/K	= S (A x	U)				(26)(30) + (32) =				44.2	(33)

Heat capacity $Cm = S(A \times k)$

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

(34)

(35)

10740.99

141.33

((28)...(30) + (32) + (32a)...(32e) =

 $= (34) \div (4) =$

can be i	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix l	<						4.57	(36)
if details	of therma	al bridging	are not kr	own (36) =	= 0.05 x (3	1)								_
Total f	abric he	at loss							(33) +	(36) =			48.77	(37)
Ventila	ation hea	at loss c	alculated	monthl	/				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	36.97	36.73	36.5	35.4	35.2	34.25	34.25	34.07	34.61	35.2	35.61	36.05		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	85.73	85.5	85.26	84.17	83.97	83.01	83.01	82.84	83.38	83.97	84.38	84.81		
									,	Average =	Sum(39)1.	12 /12=	84.17	(39)
Heat lo	oss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	(4)			
(40)m=	1.13	1.12	1.12	1.11	1.1	1.09	1.09	1.09	1.1	1.1	1.11	1.12		_
Numb	er of day	/s in mo	nth (Tab	le 1a)					,	Average =	Sum(40) _{1.}	12 /12=	1.11	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			ļ	ļ				ļ		ļ			l	
1 \\/	tor boo	ting one	rgy regu	iromont								kWh/ye	oor	
4. 000	ater nea	ung ene	igy iequ	nement.								KVV1/98	.	
		ipancy,										38		(42)
	A > 13. A £ 13.		+ 1.76 x	[1 - exp	(-0.0003	649 x (TF	FA -13.9)2)] + 0.0)013 x (⁻	TFA -13.	9)			
			ater usad	ne in litre	s per da	w Vd av	erage =	(25 x N)	+ 36		00	.79	1	(43)
								to achieve		se target o		.15		(10)
not mor	e that 125	litres per	person pe	r day (all w	ater use, l	not and co	ld)			_	-	-		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage i	n litres pei	r day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)			_	_	_	
(44)m=	99.87	96.23	92.6	88.97	85.34	81.71	81.71	85.34	88.97	92.6	96.23	99.87		
_							_	- /		Total = Su			1089.44	(44)
Energy	content of	hot water	used - cal	culated mo	onthly = 4.	190 x Vd,r	n x nm x L)Tm / 3600	kWh/mor	nth (see Ta	ables 1b, 1	c, 1d)	1	
(45)m=	148.1	129.53	133.66	116.53	111.81	96.48	89.41	102.6	103.82	120.99	132.07	143.42		_
lf incton	tanoous v	vator hoati	na ot poin	fuso (n	hot wato	storage)	ontor 0 in	boxes (46)		Total = Su	m(45) ₁₁₂ =	=	1428.42	(45)
	r		, , ,	· · · ·		,		. ,	. ,				1	(10)
(46)m= Water	22.21 storage	19.43	20.05	17.48	16.77	14.47	13.41	15.39	15.57	18.15	19.81	21.51		(46)
	•		includir	na anv so	olar or W	/WHRS	storage	within sa	me ves	sel		0	1	(47)
-				ink in dw			-					0		()
		-			-			ombi boil	ers) ente	er '0' in (47)			
	storage			,					,	,	,			
a) If m	nanufact	urer's d	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
Energy	y lost fro	m watei	storage	, kWh/ye	ear			(48) x (49)	=			0		(50)
b) If n	nanufact	urer's d	eclared	cylinder l	oss fact								1	
		-		om Tabl	e 2 (kW	h/litre/da	ıy)					0		(51)
	•	-	ee secti	on 4.3									1	()
		from Ta		2h								0		(52)
rempe	aluie I	aci01 110	m Table	20								0	J	(53)

•••		om wateı (54) in (5	⁻ storage 55)	e, kWh/y₀	ear			(47) x (51) x (52) x (53) =	0			(54) (55)
Water	storage	loss cal	culated	for each	month			((56)m = ((55) × (41)ı	n			I	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	v circuit	loss (ar	nual) fro	om Table	• 3							0		(58)
		•	,			59)m = ((58) ÷ 36	65 × (41)	m				I	
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatir	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41))m						
(61)m=	14.11	12.72	14.05	13.56	13.99	13.5	13.93	13.97	13.53	14.03	13.62	14.1		(61)
Total h	neat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	162.21	142.25	147.71	130.09	125.8	109.99	103.34	116.56	117.36	135.02	145.69	157.52		(62)
Solar DI	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contributi	on to wate	er heating)	'	
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter	-		-		-						
(64)m=	162.21	142.25	147.71	130.09	125.8	109.99	103.34	116.56	117.36	135.02	145.69	157.52		_
								Out	out from wa	ater heatei	r (annual)₁	12	1593.54	(64)
Heat g	ains fro	m water	heating,	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)n	n] + 0.8 x	: [(46)m	+ (57)m	+ (59)m]	
(65)m=	52.77	46.25	47.96	42.14	40.67	35.46	33.21	37.6	37.9	43.74	47.32	51.21		(65)
inclu	ude (57)	m in cale	culation	of (65)m	only if c	ylinder i	s in the c	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gair	is (Table	e 5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	142.96	142.96	142.96	142.96	142.96	142.96	142.96	142.96	142.96	142.96	142.96	142.96		(66)
Lightin	g gains	(calcula	ted in Ap	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5				I	
(67)m=	52.87	46.96	38.19	28.91	21.61	18.25	19.72	25.63	34.4	43.68	50.98	54.34		(67)
Applia	nces ga	ins (calc	ulated ir	n Appeno	dix L, eq	uation L	13 or L1	3a), also	see Tal	ole 5		•	I	
(68)m=	314.74	318.01	309.78	292.26	270.14	249.35	235.47	232.2	240.43	257.95	280.07	300.86		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)), also se	e Table	5			I	
(69)m=	51.68	51.68	51.68	51.68	51.68	51.68	51.68	51.68	51.68	51.68	51.68	51.68		(69)
Pumps	s and fa	ns gains	(Table	5a)									I	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	aporatic	n (nega	tive valu	es) (Tab	le 5)							I	
(71)m=	-95.3	-95.3	-95.3	-95.3	-95.3	-95.3	-95.3	-95.3	-95.3	-95.3	-95.3	-95.3		(71)
Water	heating	ı gains (1	able 5)	!	!	I		I	!			!	l	
(72)m=	70.93	68.82	64.46	58.52	54.67	49.25	44.64	50.54	52.64	58.79	65.72	68.84		(72)
	internal	gains =				(66)	ı)m + (67)m	ı ı + (68)m ∙	I + (69)m + (70)m + (7	1)m + (72))m	I	
(73)m=	540.88	536.12	514.76	482.02	448.75	419.18	402.15	410.7	429.8	462.74	499.1	526.37		(73)
	lar gains				1		1		1		L	1		

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Fac Table 6d	ctor	Area m²			Flu Tal	x ble 6a		g_ Table 6	6b	٦	FF Table 6c			Gains (W)	
Northeast 0.9x	0.77	x	3.5	5	x	1	1.28	×	0.76		x	0.7		=	14.77	(75)
Northeast 0.9x	0.77	x	3.5	5	x	2	2.97	x	0.76		x	0.7		=	30.06	(75)
Northeast 0.9x	0.77	x	3.5	5	x	4	1.38	x	0.76		×	0.7		=	54.16	(75)
Northeast 0.9x	0.77	x	3.5	5	x	6	7.96	×	0.76		×	0.7		=	88.94	(75)
Northeast 0.9x	0.77	x	3.5	5	x	9	1.35	x	0.76		×	0.7		=	119.55	(75)
Northeast 0.9x	0.77	x	3.5	5	x	9	7.38	x	0.76		×	0.7		=	127.46	(75)
Northeast 0.9x	0.77	x	3.5	5	x	9	91.1	x	0.76		×	0.7		=	119.23	(75)
Northeast 0.9x	0.77	x	3.5	5	x	7	2.63	x	0.76		x	0.7		=	95.05	(75)
Northeast 0.9x	0.77	x	3.5	5	x	5	0.42	x	0.76		×	0.7		=	65.99	(75)
Northeast 0.9x	0.77	x	3.5	5	x	2	8.07	x	0.76		× [0.7		=	36.73	(75)
Northeast 0.9x	0.77	x	3.5	5	x		14.2	x	0.76		×	0.7		=	18.58	(75)
Northeast 0.9x	0.77	x	3.5	5	x	9	9.21	x	0.76		x	0.7		=	12.06	(75)
Southwest0.9x	0.77	x	3.1	2	x	3	6.79]	0.76		×	0.7		=	42.32	(79)
Southwest0.9x	0.77	x	3.1	2	x	6	2.67]	0.76		x	0.7		=	72.09	(79)
Southwest0.9x	0.77	x	3.1	2	x	8	5.75]	0.76		×	0.7		=	98.64	(79)
Southwest0.9x	0.77	x	3.1	2	x	10	06.25]	0.76		×	0.7		=	122.22	(79)
Southwest0.9x	0.77	x	3.1	2	x	1	19.01	Ī	0.76		×	0.7		=	136.89	(79)
Southwest0.9x	0.77	x	3.1	2	x	1	18.15	Ī	0.76		×	0.7		=	135.9	(79)
Southwest0.9x	0.77	x	3.1	2	x	1	13.91	İ	0.76		×	0.7		=	131.03	(79)
Southwest0.9x	0.77	x	3.1	2	x	10	04.39	İ	0.76		×	0.7		=	120.08	(79)
Southwest0.9x	0.77	x	3.1	2	x	9	2.85	İ	0.76		×	0.7		=	106.8	(79)
Southwest0.9x	0.77	x	3.1	2	x	6	9.27	İ	0.76		×	0.7		=	79.68	(79)
Southwest0.9x	0.77	x	3.1	2	x	4	4.07	İ	0.76		×	0.7		=	50.69	(79)
Southwest0.9x	0.77	x	3.1	2	x	3	1.49	İ	0.76		×	0.7		=	36.22	(79)
								-			_			-		
Solar gains i								<u> </u>	n = Sum(74)	<u> </u>					1	
(83)m= 57.09		152.8	211.16	256.45		63.36	250.26	215	.13 172.	8 1	116.41	69.27	48.	28		(83)
Total gains –	- I - I - I - I - I - I - I - I - I - I		. ,	. ,	т`	,						1			l	(0.4)
(84)m= 597.9	7 638.27 6	667.55	693.18	705.2	6	82.54	652.41	625	.83 602.	6 5	579.15	568.37	574	.64		(84)
7. Mean inte	ernal tempe	rature	(heating	seasor	า)											_
Temperatur	e during hea	ating p	eriods ir	the liv	ing	area	from Tab	ole 9	, Th1 (°C))					21	(85)
Utilisation fa	T T	ns for I	iving are	ea, h1,n	n (s	ee Ta	ble 9a)						·		l	
Jan	Feb	Mar	Apr	May	-	Jun	Jul		ug Se	_	Oct	Nov		ec		
(86)m= 0.97	0.96	0.94	0.89	0.81	(0.67	0.52	0.5	6 0.75	5	0.9	0.95	0.9	17		(86)
Mean intern	al temperat	ure in l	living are	ea T1 (f	ollo	w ste	ps 3 to 7	7 in T	able 9c)							
(87)m= 19.38	19.55	19.84	20.24	20.6	2	20.86	20.95	20.	94 20.7	7	20.33	19.8	19.	35		(87)
Temperatur	e during hea	ating p	eriods ir	rest of	f dw	elling	from Ta	able 9	9, Th2 (°C	C)						
(88)m= 19.98	19.98	19.98	19.99	20	2	20.01	20.01	20.	01 20		20	19.99	19.	99		(88)
Utilisation fa	actor for gain	ns for r	est of d	wellina.	h2.	,m (se	e Table	9a)							-	
(89)m= 0.96	<u> </u>	0.92	0.87	0.77	-	0.59	0.42	0.4	6 0.69	9	0.87	0.94	0.9	97		(89)
L	_ <u>I</u> I				-			I	!						I	

Mean	interna	l temper	ature in	the rest	of dwelli	ing T2 (f	ollow ste	eps 3 to 7	7 in Tabl	e 9c)				
(90)m=	18.52	18.68	18.97	19.36	19.7	19.92	19.99	19.98	19.86	19.46	18.94	18.5		(90)
									f	LA = Livin	g area ÷ (4	1) =	0.26	(91)
Moon	interne	Itomno	oturo (fr	ar tha wh		lling) f	I A T4	. (1 fl	A) TO			1		
(92)m=	18.75	18.91	19.2	or the wh	19.94	20.17	20.24	+ (1 – 1L 20.24	20.1	19.69	19.17	18.72		(92)
				n interna							19.17	10.72		(02)
(93)m=	18.6	18.76	19.05	19.44	19.79	20.02	20.09	20.09	19.95	19.54	19.02	18.57		(93)
		1	uiremen	I	13.75	20.02	20.00	20.00	10.00	10.04	10.02	10.07		(00)
				mperatu	ro obtair	and at st	on 11 of		a co tha	t Ti m_('	76)m an	d ro colo	ulato	
				using Ta			ерттог	Table 3	5, 50 tha	t 11,111–(r ojin an	u ie-caic	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hr	· · ·	· · ·									
(94)m=	0.95	0.94	0.91	0.86	0.76	0.59	0.43	0.47	0.68	0.86	0.93	0.96		(94)
Usefu	l gains,	hmGm	, W = (9	4)m x (8-	4)m	1	1							
(95)m=	568.38	597.91	607.71	592.99	533.3	405.49	279.36	291.07	412.39	497.62	528.67	549.12		(95)
Month	nly aver	age exte	ernal terr	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for me	an interr	nal tempo	erature,	Lm , W =	- =[(39)m	r x [(93)m	– (96)m]				
(97)m=	· · · · · · · · · · · · · · · · · · ·	1185.1	1070.11	887.5	678.9	449.78	289.91	305.28	487.4	750.29	1005.51	1218.92		(97)
Space	e heatin	g requir	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4 ⁻	1)m			
(98)m=	489.1	394.6	344.03	212.05	108.33	0	0	0	0	187.99	343.33	498.33		
				ļ				Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	2577.75	(98)
Snac	e heatin	a requir	ement ir	۱ kWh/m²	2/vear							!	33.92	(99)
•		•••											55.92	
			nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	HP)					
•	e heatin	-	at from s	econdar	v/sunnla	montary	vevetam						0	(201)
	-					memary	-	(202) - 1	(201) -					4
	•			nain syst	~ /			(202) = 1 -					1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of I	main spa	ace heat	ting syste	em 1								90.5	(206)
Efficie	ency of	seconda	ry/suppl	ementar	y heatin	g systen	า, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	_ ar
Space			I	alculate	, i i i i i i i i i i i i i i i i i i i	I		5	1		_		- y -	
•	489.1	394.6	344.03	212.05	108.33	0	0	0	0	187.99	343.33	498.33		
(211)m)m v (20	1)4)] \ v ^	1 100 ÷ (20	1)6)	1	1							(211)
(211)11	540.44	436.02	380.14	234.31	119.7	0	0	0	0	207.72	379.37	550.64		(211)
	010.11	100.02	000.11	201101		Ů	Ů		l (kWh/yea				2848.34	(211)
0					(.,	715,1012		2040.04	
•		•	econdar 00 ÷ (20	ˈy), kWh/ ງອງ	month									
- \[(90 (215)m=	<u> </u>		00 ÷ (20	0	0	0	0	0	0	0	0	0		
(213)11-	0	0	0	0	0	0	0		l (kWh/yea	-	-		0	7(215)
								iua		, –Cum(2	- · ~/15,1012		0	(215)
	heating		tor (col-	ulated a	hovo)									
Output	162.21	ater nea 142.25	ter (caid 147.71	ulated a	125.8	109.99	103.34	116.56	117.36	135.02	145.69	157.52		
Efficier		ater hea		L 100.00	120.0	100.00		1.10.00		100.02	1.0.00	101.02	87.3	(216)
LINGIGI	10y 01 W												01.3	(210)

					L	i				1	(047)
(217)m= 89.68 89.63		.26 88.75	87.3	87.3	87.3	87.3	89.13	89.52	89.71	J	(217)
Fuel for water heating, $(219)m = (64)m \times 100$											
(219)m= 180.87 158.71		5.75 141.74	125.99	118.37	133.52	134.43	151.48	162.74	175.59		
					Tota	al = Sum(2	19a) ₁₁₂ =			1794.21	(219)
Annual totals							k	Wh/year	•	kWh/year	-
Space heating fuel use	-	tem 1								2848.34	ļ
Water heating fuel used	ł									1794.21	
Electricity for pumps, fa	ins and elec	ctric keep-hot	t							_	
central heating pump:									30		(230c)
boiler with a fan-assist	ed flue								45]	(230e)
Total electricity for the a	above, kWh	/year			sum	of (230a).	(230g) =			75	(231)
Electricity for lighting	373.51	(232)									
Total delivered energy	for all uses	(211)(221)	+ (231)	+ (232)	(237b)	=				5178.36	(338)
10a. Fuel costs - indiv	idual heatin	g systems:									-
			Fu	el			Fuel P	rice		Fuel Cost	
				/h/year			(Table	12)		£/year	
Space heating - main s	ystem 1		(21	1) x			3.4	8	x 0.01 =	99.12	(240)
Space heating - main s	ystem 2		(213	3) x			0		x 0.01 =	0	(241)
Space heating - second	lary		(21	5) x			13.	19	x 0.01 =	0	(242)
Water heating cost (oth	er fuel)		(219	9)			3.4	8	x 0.01 =	62.44	(247)
Pumps, fans and electri	ic keep-hot		(231	1)			13.	19	x 0.01 =	9.89	(249)
(if off-peak tariff, list eac	ch of (230a)	to (230g) se			licable a	nd apply	/ fuel pri		-	Table 12a	-
Energy for lighting			(232	2)			13.	19	x 0.01 =	49.27	(250)
Additional standing cha	rges (Table	12)								120	(251)
Appendix Q items: repe	at lines (25	3) and (254)	as need	ded							
Total energy cost		(245)(247) + (25	50)(254)	=					340.72	(255)
11a. SAP rating - indiv	vidual heatir	ng systems									
Energy cost deflator (Ta	able 12)									0.42	(256)
Energy cost factor (ECF	=)	[(255) x	(256)] ÷ [(4) + 45.0]	=					1.18	(257)
SAP rating (Section 12	2)									83.5	(258)
12a. CO2 emissions –	Individual ł	neating syste	ems inclu	uding mi	cro-CHF)					_
			En	ergy			Emiss	ion fac	tor	Emissions	
				/h/year			kg CO			kg CO2/yea	r
Space heating (main sy	vstem 1)		(21	1) x			0.2	16	=	615.24	(261)
Space heating (second	ary)		(21	5) x			0.5	19	=	0	(263)
Water heating			(219	9) x			0.2	16	=	387.55	(264)

Space and water heating	(261) + (262) + (263) + (26	[1002.79	(265)	
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	= [38.93	(267)
Electricity for lighting	(232) x	0.519	- [193.85	(268)
Total CO2, kg/year		sum of (265)(271) =	[1235.57	(272)
CO2 emissions per m ²		(272) ÷ (4) =	[16.26	(273)
EI rating (section 14)			[86	(274)
13a. Primary Energy					
	Energy kWh/year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)	(211) x	1.22	= [3474.98	(261)
Space heating (secondary)	(215) x	3.07	- Г	0	(263)
		3.07	L	0	」 、
Energy for water heating	(219) x	3.07	= [2188.94	(264)
Energy for water heating Space and water heating	(219) x (261) + (262) + (263) + (26	1.22	- - - -	-	- - · ·
		(4) =	L = [[= [2188.94	(264)
Space and water heating	(261) + (262) + (263) + (26	i4) =		2188.94 5663.91	(264) (265)
Space and water heating Electricity for pumps, fans and electric keep-hot	(261) + (262) + (263) + (26 (231) x	i4) =	_ _ _	2188.94 5663.91 230.25	(264) (265) (267)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 10 March 2021

Property Details: 112 Tavy [End] DCC4

Dwelling type: Located in: Region: Cross ventilation pos Number of storeys: Front of dwelling face Overshading: Overhangs: Thermal mass param Night ventilation: Blinds, curtains, shut Ventilation rate durin Overheating Details:	es: eter: tters: g hot wea	•	,	Englan South Yes 2 North Averag None Calcula False None 8 (Win	2 North East Average or unknown None Calculated 141.33 False None 8 (Windows fully open)								
Summer ventilation h Transmission heat lo	ss coeffic	cient:	ient:	493.57 48.8				(P1)					
Summer heat loss co Overhangs:	efficient:			542.34				(P2)					
Orientation: North East (Front) South West (Rear)	Ratio: 0 0		Z_overhangs: 1 1										
Solar shading:													
Orientation: North East (Front) South West (Rear)	Z blind 1 1	s:	Solar access: 0.9 0.9		Overhangs:	Z summer: 0.9 0.9		(P8) (P8)					
Solar gains:													
Orientation North East (Front) South West (Rear)	0.9 x 0.9 x	Area 3.55 3.12	Flux 105.45 126.97	g_ 0.76 0.76	FF 0.7 0.7	Shading 0.9 0.9 Total	Gains 161.32 170.71 332.03	(P3/P4)					
Internal gains:													
Internal gains Total summer gains Summer gain/loss ratio Mean summer externa Thermal mass tempera Threshold temperature Likelihood of high int	l temperat ature incre	ement	0	d)	June 416.18 769.76 1.42 15.4 1.01 17.83 Not significant	July 399.15 731.18 1.35 17.4 1.01 19.76 Not significant	August 407.7 695.34 1.28 17.5 1.01 19.79 Not sig	(P5) (P6) (P7) nificant					
Assessment of likelih	nood of h	igh inte	ernal temperatu	Not significant									