Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.33 Printed on 10 March 2021 at 09:53:14

Project Information:

Assessed By: Natalie King (STRO034719) Building Type: End-terrace House

Dwelling Details:

NEW DWELLING DESIGN STAGETotal Floor Area: 105.84m²

Site Reference: Lavant View - The Spires, Chichester Plot Reference: 116 Tweed [End] DCC2

Address:

Client Details:

Name: Redrow Homes Southern Counties Limited

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

Target Carbon Dioxide Emission Rate (TER) 17 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER)

16.41 kg/m²

OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 49.8 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 44.6 kWh/m²

OK

2 Fabric U-values

Element	Average	Highest	
External wall	0.28 (max. 0.30)	0.28 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.12 (max. 0.25)	0.12 (max. 0.70)	OK
Roof	0.12 (max. 0.20)	0.21 (max. 0.35)	OK
Openings	1.23 (max. 2.00)	1.50 (max. 3.30)	OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

3 Air permeability

Air permeability at 50 pascals 5.01 (design value)

Maximum 10.0 OK

4 Heating efficiency

Main Heating system: Database: (rev 473, product index 017929):

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35

(Combi)

Efficiency 89.6 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

5 Cylinder insulation Hot water Storage: No cylinder 6 Controls Programmer, room thermostat and TRVs **OK** Space heating controls Hot water controls: No cylinder thermostat No cylinder **OK** Boiler interlock: Yes 7 Low energy lights Percentage of fixed lights with low-energy fittings 100.0% 75.0% OK 8 Mechanical ventilation Not applicable

9 Summertime temperature

Overheating risk (South East England):

Not significant

OK

Based on:

Overshading: Average or unknown

Windows facing: North East

Windows facing: North East

Uindows facing: South West

Windows facing: North East

Windows facing: North East

Windows facing: South West

Uindows facing: South West

Windows facing: South West

Uindows facing: South West

Uindows facing: South West

Ventilation rate:

4.00

Blinds/curtains: Dark-coloured curtain or roller blind

Closed 100% of daylight hours

10 Key features

Thermal bridging 0.036 W/m²K
Doors U-value 1.1 W/m²K
Roofs U-value 0.11 W/m²K
Party Walls U-value 0 W/m²K
Floors U-value 0.12 W/m²K

Code for Sustainable Homes Report

For use with Nov 2010 addendum 2014 England

Assessor and House Details

Assessor Name: Natalie King Assessor Number: STR0034719

Property Address:

Building regulation assessment

kg/m²/year 17

0

TER 17
DER 16.41

ENE 1 Assessment - Dwelling Emission Rate

Total Energy Type CO₂ Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2012 DER Worksheet		16.41	(ZC1)
TER		17	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		16.41	
% improvement DER/TER	3.5		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	16.41	(ZC1)
CO2 emissions from appliances, equation (L14)	14.8	(ZC2)
CO2 emissions from cooking, equation (L16)	1.76	(ZC3)
Net CO2 emissions	34.4	(ZC8)

Result:

Credits awarded for ENE 1 = 0.5

Code Level = 3

ENE 2 - Fabric energy Efficiency

Fabric energy Efficiency: 44.61 Credits awarded for ENE 2 = 7.3

ENE 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	
Standard Case CO2 emissions		34.42	
Standard DER		17.86	
Actual Case CO2 emissions		34.42	
Actual DER		17.86	

Reduction in CO2 emissions

Credits awarded for ENE 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

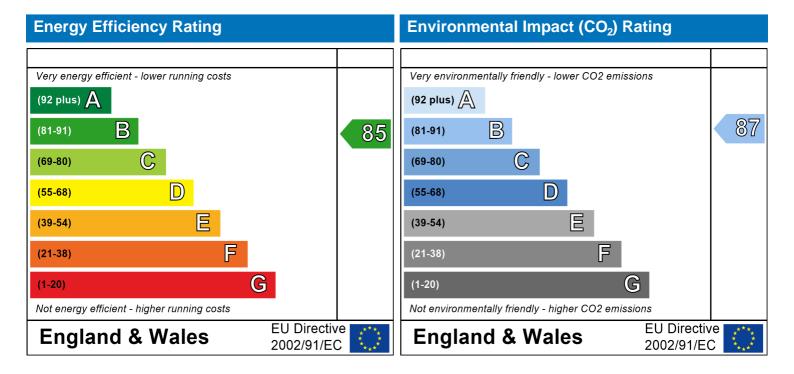
The following requirements must also be met

- Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.
- Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

Predicted Energy Assessment



Dwelling type:
Date of assessment:
Produced by:
Total floor area:

End-terrace House 24 February 2021 Natalie King 105.84 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Storey height:

1.2

1.31

1

Property Details: 116 Tweed [End] DCC2

Address:

Located in: England

Region: South East England

UPRN:

Date of assessment: 24 February 2021 Date of certificate: 10 March 2021

Assessment type: New dwelling design stage

Transaction type: New dwelling
Tenure type: Unknown
Related party disclosure: No related party
Thermal Mass Parameter: Calculated 245.4
Water use <= 125 litres/person/day: True

PCDF Version: 473

Property description:

Dwelling type: House
Detachment: End-terrace
Year Completed: 2021

Floor Location: Floor area:

Floor 0 52.92 m² 2.31 m Floor 1 52.92 m² 2.61 m

Living area: 15.18 m² (fraction 0.143)

Front of dwelling faces: North East

	per	าเท	α	t۱	m	മഠ	
\sim	νc_1		u	ιv	v	しこ	

W_138

Name:	Source:	Type:	Glazing:	Argon:	Frame:
D_28	Manufacturer	Solid	low-E, $En = 0.2$, hard coat	Yes	PVC-U
D_29	Manufacturer	Solid			PVC-U
W_133	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	
W_134	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	
W_135	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	
W_136	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	
W_137	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	
W_138	Manufacturer	Windows	low-E, $En = 0.2$, hard coat	Yes	

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
D_28	16mm or more mm	0.7	0.72	1.5	2.06	1
D_29	mm	0.7	0.72	1.1	1.89	1
W_133	16mm or more	0.7	0.72	1.2	1.84	1
W_134	16mm or more	0.7	0.72	1.2	1.28	1
W_135	16mm or more	0.7	0.72	1.2	1.31	1
W_136	16mm or more	0.7	0.72	1.2	2.43	1
W_137	16mm or more	0.7	0.72	1.2	1.31	1

0.72

0.7

Name:	Type-Name:	Location:	Orient:	Width:	Height:
D_28		External Wall	South West	2.06	1
D_29		External Wall	North East	1.89	1
W_133		External Wall	North East	1.84	1
W_134		External Wall	North East	1.28	1
W_135		External Wall	South West	1.31	1
W_136		External Wall	North East	2.43	1
W_137		External Wall	South West	1.31	1
W 138		External Wall	South West	1.31	1

16mm or more

SAP Input

Overshading: Average or unknown

Opaque Element							
Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Elemen	<u>ts</u>						
External Wall	98.01	13.43	84.58	0.28	0	False	150
Roof	47.47	0	47.47	0.11	0		9
Sloping	6.78	0	6.78	0.21	0		9
Ground Floor	52.92			0.12			75
Internal Element	<u>ts</u>						
Block	36.96						75
Stud	164.14						9
Ceiling	52.92						9
Floor	52.92						18
Party Elements							
Party Wall	45.01						70
,							

Thermal bridges:

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0365

Length	Psi-value		
10.48	0.236	E1	Steel lintel with perforated steel base plate
8.6	0.01	E3	Sill
21.48	0.005	E4	Jamb
20.72	0.089	E5	Ground floor (normal)
20.72	-0.002	E6	Intermediate floor within a dwelling
19.64	0.053	E10	Eaves (insulation at ceiling level)
21.58	0.017	E11	Eaves (insulation at rafter level)
9.46	0.051	E16	Corner (normal)
9.46	0.041	E18	Party wall between dwellings
9.14	0.043	P1	Ground floor
9.14	0	P2	Intermediate floor within a dwelling
8.6	0.035	P4	Roof (insulation at ceiling level)
0.67	0.058	P5	Roof (insulation at rafter level)

Ventilation

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys:0Number of open flues:0Number of fans:2Number of passive stacks:0Number of sides sheltered:2Pressure test:5.01

Main heating system

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 473, product index 017929) Efficiency: Winter 87.3 % Summer: 90.5

Brand name: Ideal Model: LOGIC COMBI Model qualifier: ESP1 35

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later

SAP Input

Design flow temperature: Design flow temperature >45°C

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Programmer, room thermostat and TRVs

Control code: 2106

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No Photovoltaics: None Assess Zero Carbon Home: No

				User D	Details:						
Assessor Name: Software Name:	Natalie K Stroma F	-	12		Strom Softwa					0034719 on: 1.0.5.33	
Software Name.	Stroma	3AF 201		roperty	Address			dl DCC3		JII. 1.0.3.33	
Address :			•	горопту	7 (441000	. 110 11	7000 [E11	u	-		
1. Overall dwelling dim	ensions:										
				Are	a(m²)	_	Av. He	ight(m)	_	Volume(m³)	_
Ground floor				5	52.92	(1a) x	2	.31	(2a) =	122.25	(3a)
First floor				5	52.92	(1b) x	2	.61	(2b) =	138.12	(3b)
Total floor area TFA = (1a)+(1b)+(1c))+(1d)+(1e	e)+(1r	1) 1	05.84	(4)			-		_
Dwelling volume						(3a)+(3b)+(3c)+(3d	d)+(3e)+	.(3n) =	260.37	(5)
2. Ventilation rate:											
zi venillation rate.	main		econdar	у	other		total			m³ per hour	
Number of chimneys	heatin 0	g r +	neating 0	+ F	0] = [0	X 4	40 =	0	(6a)
Number of open flues	0	╡ + ト	0		0	 	0	x	20 =	0	⊒](6b)
Number of intermittent fa	ans					_ _ _	2	x	10 =	20	」`
Number of passive vents	s					L	0	x ·	10 =	0	」`
Number of flueless gas						L	0	x	10 =	0](7c)
riamber of fideless gas	1103						0			0	_(/')
									Air ch	nanges per hou	ur
Infiltration due to chimne	eys, flues and	l fans = (6	Sa)+(6b)+(7	′a)+(7b)+((7c) =		20		÷ (5) =	0.08	(8)
If a pressurisation test has	been carried ou	or is intende	ed, proceed	d to (17),	otherwise o	continue fr	om (9) to ((16)			_
Number of storeys in	the dwelling (ns)								0	(9)
Additional infiltration	2056		,	0.05 ([(9)	-1]x0.1 =	0	(10)
Structural infiltration: (if both types of wall are p						•	uction			0	(11)
deducting areas of open			porturing to	g. ca.	.cran are	a (a					_
If suspended wooden		•	led) or 0.	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, er										0	(13)
Percentage of window	<i>i</i> s and doors	draught st	tripped		0.05 (0.0) (4.4) 4	1001			0	(14)
Window infiltration					0.25 - [0.2	. ,	-	. (45)		0	(15)
Infiltration rate			-:		(8) + (10)	. , , ,	, , ,	, ,		0	(16)
Air permeability value				•		•	etre or e	invelope	area	5.0100002288818	╡
If based on air permeab Air permeability value appli	-						is heina u	sed		0.33	(18)
Number of sides shelter	•	ation toot na	o boom don	io oi a ao;	gree an pe	modbinty	io boiling at	oou		2	(19)
Shelter factor					(20) = 1 -	[0.075 x (1	19)] =			0.85	(20)
Infiltration rate incorpora	ating shelter f	actor			(21) = (18) x (20) =				0.28	(21)
Infiltration rate modified	for monthly v	vind speed	d								_
Jan Feb	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
Monthly average wind s	peed from Ta	ble 7									
(22)m= 5.1 5	4.9 4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7	1	

Wind Factor (2	22a)m =	(22)m ÷	4									
(22a)m= 1.27	1.25	1.23	1.1	1.08	0.95	0.95	0.92	1	1.08	1.12	1.18	
, ,			l			l						
Adjusted infiltra	1	<u> </u>				i 	<u>` </u>	`´				İ
0.35 Calculate effec	0.35 ctive air	0.34 change	0.31 rate for t	0.3 he appli	0.26 Cable ca	0.26 S e	0.26	0.28	0.3	0.31	0.33	
If mechanica		-	rato for t	по арри	oabio oa	00						0 (23a)
If exhaust air he	eat pump	using Appe	endix N, (2	(23a) = (23a	a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0 (23b)
If balanced with	heat reco	overy: effic	eiency in %	allowing f	or in-use f	actor (fron	n Table 4h) =				0 (23c)
a) If balance	d mech	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	a)m = (2)	2b)m + (23b) × [1	1 – (23c)	÷ 100]
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0	(24a)
b) If balance	d mech	anical ve	entilation	without	heat red	covery (N	MV) (24b	m = (22)	2b)m + (2	23b)		
(24b)m= 0	0	0	0	0	0	0	0	0	0	0	0	(24b)
c) If whole h				-								
if (22b)n		``	· ` `			<u> </u>	ŕ		.5 × (23b	i e		
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0	(24c)
d) If natural if (22b)n									0.51			
(24d)m = 0.56	0.56	0.56	0.55	0.54	0.53	0.53	0.5 + [(2	0.54	0.54	0.55	0.55	(24d)
Effective air				<u> </u>	<u> </u>	<u> </u>			0.04	0.00	0.00	(=/
(25)m= 0.56	0.56	0.56	0.55	0.54	0.53	0.53	0.53	0.54	0.54	0.55	0.55	(25)
` /		1								0.00		· /
3. Heat losse												
3. Heat losse ELEMENT	s and he Gros area	SS	parameto Openin m	gs	Net Ar A ,r		U-valı W/m2		A X U (W/I	<)	k-value kJ/m²-ł	
	Gros	SS	Openin	gs		m²				<) 		
ELEMENT	Gros	SS	Openin	gs	A ,r	m² x	W/m2	k 	(W/I	<) 		K kJ/K
ELEMENT Doors Type 1	Gros area	SS	Openin	gs	A ,r	m ²	W/m2	eK = =	(W/I	<) 		K kJ/K (26)
ELEMENT Doors Type 1 Doors Type 2	Gros area	SS	Openin	gs	A ,r 2.06	m ²	W/m2 1.5	eK = = = = =	3.09 2.079	<) 		(26) (26)
Doors Type 1 Doors Type 2 Windows Type	Gros area	SS	Openin	gs	A ,r 2.06 1.89	x x x x x x x x x x x x x x x x x x x	W/m2 1.5 1.1 /[1/(1.2)+	= 0.04] = 0.04] =	(W/I 3.09 2.079 2.11	<) 		(26) (26) (27)
Doors Type 1 Doors Type 2 Windows Type Windows Type	Gros area 1 2 2	SS	Openin	gs	A ,r 2.06 1.89 1.84 1.28	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+	0.04] = 0.04] =	(W/I 3.09 2.079 2.11 1.47	<) 		(26) (26) (27) (27)
Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4	SS	Openin	gs	A ,r 2.06 1.89 1.84 1.28 1.31	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+	0.04] = 0.04] = 0.04] =	(W/I 3.09 2.079 2.11 1.47 1.5	<)		(26) (26) (27) (27) (27)
Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4 5	SS	Openin	gs	A ,r 2.06 1.89 1.84 1.28 1.31 2.43	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK	(W/I 3.09 2.079 2.11 1.47 1.5 2.78	<)		(26) (26) (27) (27) (27) (27) (27)
Doors Type 1 Doors Type 2 Windows Type Windows Type Windows Type Windows Type Windows Type Windows Type	Gros area 1 2 2 3 4 4 5	SS	Openin	gs	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	EK	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5		kJ/m²-ŀ	(26) (26) (27) (27) (27) (27) (27) (27)
ELEMENT Doors Type 1 Doors Type 2 Windows Type Floor	Gros area 1 2 3 4 4 5 6	ss (m²)	Openin m	gs ₁ 2	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31 52.92	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+	K	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5 1.5 6.35039		kJ/m²-l	(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Type 1 Doors Type 2 Windows Type	Gros area 1 2 3 4 4 5 5 6 6	ss (m²)	Openin m	gs ₁ 2	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31 52.92 84.58	x x x x x x x x x x x x x x x x x x x	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ 0.12 0.28	K	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5 6.35039 23.68		75 150	(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Type 1 Doors Type 2 Windows Type Roor Walls Roof Type1	Gros area 1 2 2 3 4 4 5 5 6 6 98.0 47.4	01 01	Openin m	gs ₁ 2	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31 52.92 84.58 47.47	x1 x	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ 0.12 0.28 0.11	K	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5 1.5 6.35039 23.68 5.22		75 150 9	(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type Roof Type1 Roof Type2	Gros area 1 2 3 4 4 5 6 7 6 7 6 7	01 47 8	Openin m	gs ₁ 2	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31 52.92 84.58 47.47 6.78	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ 0.12 0.28	K	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5 6.35039 23.68		75 150	(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Type 1 Doors Type 2 Windows Type Roor Walls Roof Type1 Roof Type2 Total area of e	Gros area 1 2 3 4 4 5 6 7 6 7 6 7	01 47 8	Openin m	gs ₁ 2	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31 52.92 84.58 47.47 6.78	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ 0.12 0.28 0.11 0.21	K	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5 6.35039 23.68 5.22		75 150 9	(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Type 1 Doors Type 2 Windows Type Tloor Walls Roof Type1 Roof Type2 Total area of e Party wall	Gros area 1 2 3 4 4 5 6 7 47.4 6.7	01 47 8	Openin m	gs ₁ 2	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31 52.92 84.58 47.47 6.78 205.1	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ 0.12 0.28 0.11	K	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5 1.5 6.35039 23.68 5.22		75 150 9 9	(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
ELEMENT Doors Type 1 Doors Type 2 Windows Type Tloor Walls Roof Type1 Roof Type2 Total area of e Party wall Internal wall **	Gros area 1	01 47 8	Openin m	gs ₁ 2	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31 52.92 84.58 47.47 6.78 205.1 45.01	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ 0.12 0.28 0.11 0.21	K	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5 6.35039 23.68 5.22		75 150 9 9 70	(26) (26) (27) (27) (27) (27) (27) (27) (27) (27
Doors Type 1 Doors Type 2 Windows Type Tloor Walls Roof Type1 Roof Type2 Total area of e Party wall	Gros area 1	01 47 8	Openin m	gs ₁ 2	A ,r 2.06 1.89 1.84 1.28 1.31 2.43 1.31 52.92 84.58 47.47 6.78 205.1	m ²	W/m2 1.5 1.1 /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ /[1/(1.2)+ 0.12 0.28 0.11 0.21	K	(W/I 3.09 2.079 2.11 1.47 1.5 2.78 1.5 6.35039 23.68 5.22		75 150 9 9	(26) (26) (27) (27) (27) (27) (27) (27) (27) (27

Interna	ıl ceiling					52.92					Г	9	476.2	8 (32e)
	_		ows, use e	effective wi	indow U-va			ı formula 1	/[(1/U-valu	re)+0.04] a	L s given in			0 (020)
					ls and part									
			= S (A x	U)				(26)(30)	+ (32) =				52.7	(33)
		Cm = S(•						((28)	.(30) + (32	2) + (32a)	(32e) =	25973.05	(34)
		-			: TFA) in				` '	÷ (4) =			245.4	(35)
	0		ere the de tailed calci		constructi	ion are not	known pr	ecisely the	indicative	values of	TMP in Ta	ible 1f		
					using Ap	pendix k	<					[7.48	(36)
if details	of therma	ıl bridging	are not kn	own (36) =	= 0.05 x (3	1)						L		
Total fa	abric he	at loss							(33) +	(36) =			60.18	(37)
Ventila	tion hea	t loss ca	alculated	monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	48.37	48.16	47.95	46.98	46.8	45.96	45.96	45.81	46.29	46.8	47.17	47.55		(38)
Heat tr	ansfer c	oefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	108.55	108.34	108.13	107.17	106.99	106.14	106.14	105.99	106.47	106.99	107.35	107.73		_
Heat Id	ss para	meter (F	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) _{1.} (4)	.12 /12=	107.17	(39)
(40)m=	1.03	1.02	1.02	1.01	1.01	1	1	1	1.01	1.01	1.01	1.02		
,					<u> </u>			ļ		Average =	Sum(40) _{1.}	.12 /12=	1.01	(40)
Numbe	er of day	s in mor	nth (Tab	le 1a)										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
								•						
4. Wa	iter heat	ing ener	gy requi	irement:								kWh/ye	ear:	
		ing ener		irement:							2.	kWh/ye	ear:	(42)
Assum if TF	ed occu A > 13.9	pancy, l 9, N = 1	N		·(-0.0003	349 x (TF	FA -13.9)2)] + 0.(0013 x (ΓFA -13.			ear:	(42)
Assum if TF if TF	ed occu A > 13.9 A £ 13.9	pancy, N 9, N = 1 9, N = 1	N + 1.76 x	[1 - ехр			•	, , -	,	ΓFA -13.	9)	79	ear:	, ,
Assum if TF if TF Annua Reduce	ed occu A > 13.9 A £ 13.9 I averag the annua	ipancy, I 9, N = 1 9, N = 1 e hot wa la average	N + 1.76 x ater usag hot water	[1 - exp ge in litre usage by	es per da 5% if the d	ay Vd,avo Iwelling is	erage =	(25 x N)	+ 36		9)		ear:	(42)
Assum if TF if TF Annua Reduce	ed occu A > 13.9 A £ 13.9 I averag the annua	ipancy, I 9, N = 1 9, N = 1 e hot wa la average	N + 1.76 x ater usag hot water	[1 - exp ge in litre usage by	es per da	ay Vd,avo Iwelling is	erage =	(25 x N)	+ 36		9)	79	ear:	, ,
Assum if TF if TF Annua Reduce not more	ed occu A > 13.9 A £ 13.9 I averag the annua of that 125	pancy, N P, N = 1 P, N = 1 e hot wa al average litres per p	N + 1.76 x ater usag hot water person per Mar	[1 - exp ge in litre usage by day (all w Apr	es per da 5% if the d vater use, I	y Vd,ave lwelling is a not and col	erage = designed i ld) Jul	(25 x N) to achieve	+ 36		9)	79	ear:	, ,
Assum if TF if TF Annua Reduce not more	ed occu A > 13.9 A £ 13.9 I averag the annua e that 125 Jan er usage in	pancy, N P, N = 1 P, N = 1 e hot wa all average litres per p Feb n litres per	N + 1.76 x ater usag hot water person per Mar day for ea	[1 - exp ge in litre usage by day (all w Apr ach month	es per da 5% if the d vater use, I May Vd,m = fac	y Vd,ave lwelling is a not and con Jun ctor from T	erage = designed i d) Jul Table 1c x	(25 x N) to achieve Aug	+ 36 a water us Sep	Se target o	9) 10 Nov	79 0.4 Dec	ear:	, ,
Assum if TF if TF Annua Reduce not more	ed occu A > 13.9 A £ 13.9 I averag the annua of that 125	pancy, N P, N = 1 P, N = 1 e hot wa al average litres per p	N + 1.76 x ater usag hot water person per Mar	[1 - exp ge in litre usage by day (all w Apr	es per da 5% if the d vater use, I	y Vd,ave lwelling is a not and col	erage = designed i ld) Jul	(25 x N) to achieve	+ 36 a water us Sep 98.39	Oct	9) 10 Nov 106.43	79 0.4 Dec		(43)
Assum if TF if TF Annua Reduce not more Hot wate (44)m=	ed occu A > 13.9 A £ 13.9 I averag the annual that 125 Jan er usage ii	ipancy, No. 1, N	+ 1.76 x ater usag hot water person per Mar day for ea	[1 - exp ge in litre usage by day (all w Apr ach month	es per da 5% if the d vater use, I May Vd,m = fac	y Vd,ave lwelling is a not and con Jun ctor from 7	erage = designed and designed a	(25 x N) to achieve Aug (43) 94.38	+ 36 a water us Sep 98.39	Oct 102.41 Fotal = Sur	Nov 106.43 m(44) ₁₁₂ =	79 0.4 Dec 110.44	ear: 1204.81	, ,
Assum if TF if TF Annua Reduce not more Hot wate (44)m=	ed occu A > 13.9 A £ 13.9 I averag the annual that 125 Jan er usage in	ppancy, N = 1 Po, N = 1 Po hot was all average per per per per per per per per per pe	H + 1.76 x ater usage hot water person per Mar day for ear 102.41 used - cal	[1 - exp ge in litre usage by day (all w Apr ach month 98.39	es per da 5% if the day atter use, P May $Vd, m = fac$ 94.38	ay Vd,ave lwelling is a not and con Jun ctor from 7 90.36	erage = designed and designed a	(25 x N) to achieve Aug (43) 94.38	+ 36 a water us Sep 98.39 0 kWh/mor	Oct 102.41 Total = Suith (see Ta	Nov 106.43 m(44) ₁₁₂ =	79 0.4 Dec 110.44 c, 1d)		(43)
Assum if TF if TF Annua Reduce not more Hot wate (44)m=	ed occu A > 13.9 A £ 13.9 I averag the annual that 125 Jan er usage ii	ipancy, No. 1, N	+ 1.76 x ater usag hot water person per Mar day for ea	[1 - exp ge in litre usage by day (all w Apr ach month	es per da 5% if the d vater use, I May Vd,m = fac 94.38	y Vd,ave lwelling is a not and con Jun ctor from 7	erage = designed and designed a	(25 x N) to achieve Aug (43) 94.38	+ 36 a water us Sep 98.39 0 kWh/mor 114.82	Oct 102.41 Total = Sun 133.81	Nov 106.43 m(44) ₁₁₂ = ables 1b, 1	0.4 Dec 110.44 c, 1d) 158.61		(43)
Assum if TF if TF Annua Reduce not more Hot wate (44)m= Energy (45)m=	ed occu A > 13.9 A £ 13.9 I averag the annual e that 125 Jan 110.44	pancy, N = 1 Poor N =	H + 1.76 x ater usage hot water person per Mar day for ea 102.41 used - cal 147.81	[1 - exp ge in litre usage by day (all w Apr ach month 98.39 culated me	es per da 5% if the day atter use, P May $Vd, m = fac$ 94.38	y Vd,avd welling is one and color Jun ctor from 7 90.36	erage = designed and dolor designed and dolor designed and dolor designed and desig	(25 x N) to achieve Aug (43) 94.38 97m / 3600 113.46	+ 36 a water us Sep 98.39 0 kWh/mor 114.82	Oct 102.41 Total = Sun 133.81	Nov 106.43 m(44) ₁₁₂ = 146.06	0.4 Dec 110.44 c, 1d) 158.61	1204.81	(43)
Assum if TF if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m=	ed occu A > 13.9 A £ 13.9 I averag the annual e that 125 Jan 110.44 content of 163.78	pancy, N = 1 Po, N = 1 Po hot was all average litres per	H + 1.76 x ater usage hot water person per Mar day for ea 102.41 used - cal 147.81	[1 - exp ge in litre usage by day (all w Apr ach month 98.39 culated me	es per da 5% if the de tater use, l' May Vd,m = fact 94.38 conthly = 4.	y Vd,avd welling is one and color Jun ctor from 7 90.36	erage = designed and dolor designed and dolor designed and dolor designed and desig	(25 x N) to achieve Aug (43) 94.38 97m / 3600 113.46	+ 36 a water us Sep 98.39 0 kWh/mor 114.82	Oct 102.41 Total = Sun 133.81	Nov 106.43 m(44) ₁₁₂ = 146.06	0.4 Dec 110.44 c, 1d) 158.61	1204.81	(43)
Assum if TF if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water	led occu A > 13.9 A £ 13.9 I average the annual that 125 Jan er usage in 110.44 content of 163.78 taneous w 24.57 storage	ppancy, N = 1 P, N = 1 Pe hot was all average litres per	N + 1.76 x ater usag hot water person per Mar day for ea 102.41 used - cal 147.81 ng at point 22.17	ge in litre usage by day (all w Apr ach month 98.39 culated me 128.87 of use (no	es per da 5% if the day atter use, I May Vd,m = fact 94.38	y Vd,ave lwelling is a not and con Jun ctor from 7 90.36 190 x Vd,n 106.7	erage = designed and designed a	(25 x N) to achieve Aug (43) 94.38 07m / 3600 113.46 boxes (46) 17.02	+ 36 a water us Sep 98.39 0 kWh/mor 114.82 0 to (61) 17.22	Oct 102.41 Total = Sur 133.81 Total = Sur 20.07	Nov 106.43 m(44) ₁₁₂ = ables 1b, 1 146.06 m(45) ₁₁₂ = 21.91	Dec 110.44 c, 1d) 158.61 c 23.79	1204.81	(43) (44) (45) (46)
Assum if TF if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag	ed occu A > 13.9 A £ 13.9 I average the annual enthat 125 Jan ar usage in 110.44 content of 163.78 taneous w 24.57 storage e volum	pancy, N = 1 Poor N =	H + 1.76 x ater usage hot water person per day for ear 102.41 147.81 used - cal 147.81 ang at point 22.17	ge in litre usage by day (all was Apr ach month 98.39 culated me 128.87 for use (no. 19.33 ang any se	es per da 5% if the de 5% if the 5% if the de 5% if the de 5% if the de 5% if the de 5% if the d	y Vd,avd welling is one and color Jun go.36 190 x Vd,n 106.7	erage = designed and designed a	(25 x N) to achieve Aug (43) 94.38 97m / 3600 113.46 boxes (46) 17.02 within sa	+ 36 a water us Sep 98.39 0 kWh/mor 114.82 0 to (61) 17.22	Oct 102.41 Total = Sur 133.81 Total = Sur 20.07	Nov 106.43 m(44) ₁₁₂ = ables 1b, 1 146.06 m(45) ₁₁₂ = 21.91	Dec 110.44 c, 1d) 158.61	1204.81	(43)
Assum if TF if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag If comm	led occu A > 13.9 A £ 13.9 I average the annual that 125 Jan ar usage in 110.44 content of 163.78 taneous w 24.57 storage e volum	ppancy, N = 1 Po, N = 1 Pe hot was all average litres per per litres per per litres per	N + 1.76 x ater usag hot water person per Mar day for ea 102.41 used - cal 147.81 ag at point 22.17 includir nd no ta	ge in litre usage by day (all w Apr ach month 98.39 culated me 128.87 for use (no	es per da 5% if the d rater use, f May Vd,m = fac 94.38 onthly = 4. 123.65 o hot water 18.55 colar or W relling, e	y Vd,ave welling is a not and color from 7 90.36 190 x Vd,n 106.7 storage), 16.01	erage = designed of d) Jul Fable 1c x 90.36 98.88 enter 0 in 14.83 storage litres in	(25 x N) to achieve Aug (43) 94.38 97m / 3600 113.46 boxes (46) 17.02 within sa (47)	+ 36 a water us Sep 98.39 0 kWh/mor 114.82 0 to (61) 17.22 ame ves	Oct 102.41 Total = Sunth (see Tail 133.81) Total = Sunth (see Tail 20.07) Sel	Nov 106.43 m(44) ₁₁₂ = sbles 1b, 1 146.06 m(45) ₁₁₂ = 21.91	Dec 110.44 c, 1d) 158.61 c 23.79	1204.81	(43) (44) (45) (46)
Assum if TF if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag If commothered	led occu A > 13.9 A £ 13.9 I average the annual that 125 Jan ar usage in 110.44 content of 163.78 taneous w 24.57 storage e volum	pancy, N = 1 Po, N = 1 Po hot was playerage litres per positives per per positives per positives per positives per per positives per per per positives per positives per p	N + 1.76 x ater usag hot water person per Mar day for ea 102.41 used - cal 147.81 ag at point 22.17 includir nd no ta	ge in litre usage by day (all w Apr ach month 98.39 culated me 128.87 for use (no	es per da 5% if the da 5% if th	y Vd,ave welling is a not and color from 7 90.36 190 x Vd,n 106.7 storage), 16.01	erage = designed of d) Jul Fable 1c x 90.36 98.88 enter 0 in 14.83 storage litres in	(25 x N) to achieve Aug (43) 94.38 97m / 3600 113.46 boxes (46) 17.02 within sa (47)	+ 36 a water us Sep 98.39 0 kWh/mor 114.82 0 to (61) 17.22 ame ves	Oct 102.41 Total = Sunth (see Tail 133.81) Total = Sunth (see Tail 20.07) Sel	Nov 106.43 m(44) ₁₁₂ = sbles 1b, 1 146.06 m(45) ₁₁₂ = 21.91	Dec 110.44 c, 1d) 158.61 c 23.79	1204.81	(43) (44) (45) (46)
Assum if TF if TF Annua Reduce not more Hot wate (44)m= Energy (45)m= If instant (46)m= Water Storag If comit Otherw Water	ed occu A > 13.9 A £ 13.9 I average the annual that 125 Jan ar usage in 110.44 content of 163.78 taneous w 24.57 storage e volum munity h vise if no	pancy, N = 1 P, N = 1 Pe hot was a laverage litres per	H + 1.76 x ater usage hot water person per day for ear 102.41 used - cal 147.81 ing at point 22.17 includir and no tal hot water 1.00 includir 1.00 incl	ge in litre usage by day (all w Apr ach month 98.39 culated me 128.87 for use (no	es per da 5% if the d rater use, f May Vd,m = fac 94.38 onthly = 4. 123.65 o hot water 18.55 colar or W relling, e	y Vd,ave livelling is one and color from Tour go.36 190 x Vd,n 106.7 16.01 /WHRS and color from Tour go.36	erage = designed of dd) Jul Fable 1c x 90.36 98.88 enter 0 in 14.83 storage litres in deous co	(25 x N) to achieve Aug (43) 94.38 97m / 3600 113.46 boxes (46) 17.02 within sa (47)	+ 36 a water us Sep 98.39 0 kWh/mor 114.82 0 to (61) 17.22 ame ves	Oct 102.41 Total = Sunth (see Tail 133.81) Total = Sunth (see Tail 20.07) Sel	Nov 106.43 m(44) ₁₁₂ = sbles 1b, 1 146.06 m(45) ₁₁₂ = 21.91	Dec 110.44 c, 1d) 158.61 c 23.79	1204.81	(43) (44) (45) (46)

Energy lost from water	r storage	, kWh/ye	ear			(48) x (49)) =			0		(50)
b) If manufacturer's de		-									'	
Hot water storage loss If community heating s			e 2 (KWI	n/litre/da	ıy)					0		(51)
Volume factor from Ta		JII 4.3								0	1	(52)
Temperature factor fro		2b								0		(53)
Energy lost from water			ear			(47) x (51)) x (52) x (53) =		0	<u> </u>	(54)
Enter (50) or (54) in (5	_	,	,			() (,	, (==, (,		0		(55)
Water storage loss cal	•	or each	month			((56)m = (55) × (41)ı	m		_	l	
(56)m= 0 0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinder contains dedicate	d solar sto	rage, (57)r	n = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	∤ lix H	
(57)m= 0 0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit loss (ar	nnual) fro	m Tahle	3							0		(58)
Primary circuit loss cal	,			59)m = ((58) ÷ 36	65 × (41)	m				l	` '
(modified by factor f			•		,	, ,		r thermo	stat)			
(59)m= 0 0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss calculated	for each	month (61)m –	(60) ± 36	S5 × (41)	\m					J	
(61)m= 14.15 12.77	14.11	13.62	14.04	13.54	13.97	14.01	13.58	14.08	13.66	14.14	1	(61)
Total heat required for						l	l				(50)m + (61)m	(- /
	161.93	142.49	137.69	120.25	112.85	127.47	128.4	147.89	159.72	<u> </u>	(39)111 + (61)111	(62)
,										172.75		(02)
Solar DHW input calculated								r contributi	on to wate	er neating)		
(add additional lines if		0	0	applies 0	, see Ap	pendix c) 0	0	0	0	1	(63)
· · · <u> </u>	لــــــــا	U	U	0	U	U	U	0	U	U		(00)
Output from water hea		440.40	107.00	400.05	440.05	407.47	100.1	4.47.00	450.70	470.75	I	
(64)m= 177.93 156.01	161.93	142.49	137.69	120.25	112.85	127.47	128.4	147.89	159.72	172.75	4745.07	7(64)
							out from wa				1745.37	(64)
Heat gains from water	1 1]	()
(65)m= 57.99 50.82	52.68	46.25	44.62	38.86	36.37	41.23	41.57	48.01	51.98	56.27		(65)
include (57)m in cal	culation o	of (65)m	only if c	ylinder is	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Internal gains (see	e Table 5	and 5a)):									
Metabolic gains (Table	5), Wat	ts									_	
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 167.24 167.24	167.24	167.24	167.24	167.24	167.24	167.24	167.24	167.24	167.24	167.24		(66)
Lighting gains (calcula	ted in Ap	pendix l	L, equati	ion L9 o	r L9a), a	lso see	Table 5				'	
(67)m= 69.87 62.06	50.47	38.21	28.56	24.11	26.06	33.87	45.46	57.72	67.37	71.82		(67)
Appliances gains (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), also	see Tal	ble 5			1	
(68)m= 396.18 400.29	389.93	367.87	340.03	313.87	296.39	292.28	302.64	324.69	352.53	378.7		(68)
Cooking gains (calcula	ated in Ap	pendix	L, equat	ion L15	or L15a)	, also se	ee Table	5			1	
(69)m= 54.51 54.51	54.51	54.51	54.51	54.51	54.51	54.51	54.51	54.51	54.51	54.51		(69)
Pumps and fans gains	(Table 5	ia)									ı	
(70)m= 3 3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. evaporation	n (negat	ive valu	es) (Tab	le 5)							J	
(71)m= -111.5 -111.5	-111.5	-111.5	-111.5	-111.5	-111.5	-111.5	-111.5	-111.5	-111.5	-111.5		(71)
						I	ı				l .	

Water heating	ıg gains (T	able 5)												
(72)m= 77.95	75.63	70.8	64.24	59.98	5	3.98	48.88	55.	42 57.74	64.53	72.2	75.64		(72)
Total intern	al gains =				<u>' </u>	(66)	m + (67)m	+ (68	3)m + (69)m + (7	70)m +	(71)m + (72)	m		
(73)m= 657.2		624.46	583.58	541.83	50	05.22	484.59	494	.82 519.09	560.2	605.35	639.41		(73)
6. Solar gai	ns:													
Solar gains ar	e calculated	using solai	flux from	Table 6a	and	associ	iated equa	tions	to convert to the	applic	able orientat	ion.		
Orientation:		actor	Area			Flu			_ g		FF		Gains	
	Table 6d		m²			Tal	ole 6a		Table 6b		Table 6c		(W)	
Northeast 0.9	0.77	X	1.8	34	x	1	1.28	x	0.72	X	0.7	=	7.25	(75)
Northeast 0.9	0.77	X	1.2	28	X	1	1.28	x	0.72	X	0.7	=	5.04	(75)
Northeast 0.9	0.77	X	2.4	13	x	1	1.28	x	0.72	X	0.7	=	9.58	(75)
Northeast 0.9	0.77	X	1.8	34	X	2	2.97	X	0.72	X	0.7	=	14.76	(75)
Northeast 0.9	0.77	X	1.2	28	x	2	2.97	x	0.72	X	0.7	=	10.27	(75)
Northeast 0.9	0.77	X	2.4	13	X	2	2.97	x	0.72	×	0.7	=	19.49	(75)
Northeast 0.9	0.77	X	1.8	34	X	4	1.38	x	0.72	x	0.7	=	26.59	(75)
Northeast 0.9	0.77	X	1.2	28	X	4	1.38	x	0.72	X	0.7	=	18.5	(75)
Northeast 0.9	0.77	x	2.4	13	x	4	1.38	x	0.72	x	0.7	=	35.12	(75)
Northeast 0.9	0.77	X	1.8	34	x	6	7.96	x	0.72	x	0.7	=	43.67	(75)
Northeast 0.9	0.77	X	1.2	28	x	6	7.96	x	0.72	x	0.7	=	30.38	(75)
Northeast 0.9	0.77	X	2.4	13	x	6	7.96	x	0.72	x	0.7	=	57.68	(75)
Northeast 0.9	0.77	X	1.8	34	x	9	1.35	x	0.72	x	0.7	=	58.7	(75)
Northeast 0.9	0.77	X	1.2	28	x	9	1.35	x	0.72	x	0.7	=	40.84	(75)
Northeast 0.9	0.77	X	2.4	13	x	9	1.35	x	0.72	x	0.7	=	77.53	(75)
Northeast 0.9	0.77	X	1.8	34	x	9	7.38	x	0.72	x	0.7	=	62.59	(75)
Northeast 0.9	0.77	X	1.2	28	x	9	7.38	x	0.72	x	0.7	=	43.54	(75)
Northeast 0.9	0.77	x	2.4	13	x	9	7.38	x	0.72	x	0.7	=	82.65	(75)
Northeast 0.9	0.77	X	1.8	34	x	Ç	91.1	x	0.72	x	0.7	=	58.55	(75)
Northeast 0.9	0.77	X	1.2	28	x	Ç	91.1	x	0.72	x	0.7	=	40.73	(75)
Northeast 0.9	0.77	X	2.4	13	x	Ç	91.1	x	0.72	×	0.7	=	77.32	(75)
Northeast 0.9	0.77	X	1.8	34	x	7	2.63	x	0.72	X	0.7	=	46.67	(75)
Northeast 0.9	0.77	X	1.2	28	x	7	2.63	x	0.72	x	0.7	=	32.47	(75)
Northeast 0.9	0.77	x	2.4	13	x	7	2.63	x	0.72	×	0.7	_ =	61.64	(75)
Northeast 0.9	0.77	x	1.8	34	x	5	0.42	x	0.72	×	0.7		32.4	(75)
Northeast 0.9	0.77	X	1.2	28	x	5	0.42	x	0.72	×	0.7		22.54	(75)
Northeast 0.9	0.77	x	2.4	13	х	5	0.42	x	0.72	×	0.7		42.79	(75)
Northeast 0.93	0.77	X	1.8	34	x	2	8.07	x	0.72	X	0.7	<u> </u>	18.04	(75)
Northeast 0.9	0.77	x	1.2	28	x	2	8.07	x	0.72	×	0.7		12.55	(75)
Northeast 0.9	0.77	x	2.4	13	x	2	8.07	x	0.72	×	0.7	-	23.82	(75)
Northeast 0.93	0.77	x	1.8	34	x		14.2	x	0.72	X	0.7		9.12	(75)
Northeast 0.9	0.77	x	1.2	28	x		14.2	x	0.72	×	0.7		6.35	(75)

	0.77	X	0.40	х	14.0	X	0.70	x	0.7] =	12.05	(75)
Northeast _{0.9x}	0.77	╡	2.43]]	14.2]]	0.72]]	0.7]]	12.05	(75)
Northeast 0.9x	0.77] X	1.84	l x	9.21	X	0.72	X] =	5.92	=
Northeast 0.9x	0.77] X]	1.28	X 	9.21	X	0.72	X	0.7] = 1	4.12	(75)
Southwest _{0.9x}	0.77	X	2.43	X	9.21	X	0.72	X	0.7] = 1	7.82	(75)
Southwest _{0.9x}	0.77] X]	1.31	X 1	36.79]]	0.72	X	0.7] = 1	16.83	(79)
Southwest _{0.9x}	0.77] X]	1.31	X 	36.79]]	0.72	X	0.7] = 1	16.83	(79)
Southwest _{0.9x}	0.77	X	1.31	X	36.79] 1	0.72	X	0.7] = 1	16.83	(79)
Southwest _{0.9x}	0.77] X	1.31	X 1	62.67] I	0.72	X	0.7] = 1	28.68	(79)
Southwest _{0.9x}	0.77] X]	1.31	X 	62.67] I	0.72	X	0.7] = 1	28.68	(79)
Southwest _{0.9x}	0.77] X]	1.31	X 1	62.67]]	0.72	X	0.7] = 1	28.68	(79)
Southwest _{0.9x}	0.77] X]	1.31	X 	85.75] I	0.72	X	0.7] = 1	39.24	(79)
<u></u>	0.77	X	1.31	X I	85.75] 1	0.72	X	0.7] = 1	39.24	(79)
Southwesto a	0.77	X	1.31	X	85.75] i	0.72	X	0.7] = 1	39.24	(79)
Southweste a	0.77	X	1.31	X	106.25	 	0.72	X	0.7] =	48.62	(79)
Southwests a	0.77	X	1.31	X	106.25] 1	0.72	X	0.7] = 1	48.62	(79)
Southwests a	0.77	X	1.31	X	106.25	 	0.72	X	0.7] = 1	48.62	(79)
Southwests a	0.77	X	1.31	X	119.01] I	0.72	X	0.7] =	54.45	(79)
Southwesto.9x	0.77	X	1.31	X	119.01] i	0.72	X	0.7] =	54.45	(79)
Southwesto.9x	0.77	X	1.31	X	119.01] 1	0.72	X	0.7] =	54.45	(79)
Southwesto.9x	0.77	X	1.31	X	118.15] 1	0.72	X	0.7] = 1	54.06	(79)
Southwest _{0.9x}	0.77	X	1.31	X	118.15		0.72	X	0.7] =	54.06	(79)
Southwest _{0.9x}	0.77	X	1.31	X	118.15		0.72	X	0.7] =	54.06	(79)
Southwest _{0.9x}	0.77	X	1.31	X	113.91		0.72	X	0.7] =	52.12	(79)
Southwest _{0.9x}	0.77	X	1.31	X	113.91		0.72	X	0.7] =	52.12	(79)
Southwest _{0.9x}	0.77	X	1.31	X	113.91		0.72	X	0.7] =	52.12	(79)
Southwest _{0.9x}	0.77	X	1.31	X	104.39		0.72	X	0.7	=	47.76	(79)
Southwest _{0.9x}	0.77	X	1.31	X	104.39		0.72	X	0.7] =	47.76	(79)
Southwest _{0.9x}	0.77	X	1.31	X	104.39		0.72	X	0.7] =	47.76	(79)
Southwest _{0.9x}	0.77	X	1.31	X	92.85		0.72	X	0.7] =	42.48	(79)
Southwest _{0.9x}	0.77	X	1.31	X	92.85		0.72	X	0.7] =	42.48	(79)
Southwest _{0.9x}	0.77	X	1.31	X	92.85		0.72	X	0.7	=	42.48	(79)
Southwest _{0.9x}	0.77	X	1.31	X	69.27		0.72	X	0.7] =	31.69	(79)
Southwest _{0.9x}	0.77	X	1.31	X	69.27		0.72	X	0.7	=	31.69	(79)
Southwest _{0.9x}	0.77	X	1.31	X	69.27		0.72	X	0.7	=	31.69	(79)
Southwest _{0.9x}	0.77	X	1.31	X	44.07		0.72	X	0.7	=	20.16	(79)
Southwest _{0.9x}	0.77	X	1.31	x	44.07		0.72	x	0.7	=	20.16	(79)
Southwest _{0.9x}	0.77	X	1.31	x	44.07		0.72	X	0.7	=	20.16	(79)
Southwest _{0.9x}	0.77	X	1.31	x	31.49	[0.72	X	0.7	=	14.41	(79)
Southwest _{0.9x}	0.77	X	1.31	x	31.49		0.72	X	0.7	=	14.41	(79)
Southwest _{0.9x}	0.77	X	1.31	X	31.49		0.72	X	0.7	=	14.41	(79)

(83)m= 72.38 130.55 197.92 277.57 340.43 350.95 332.95 284.07 225.19 149.49 88.01 61.08 (83)

(83)m = Sum(74)m ...(82)m

Solar gains in watts, calculated for each month

Total g	ains – i	nternal a	and solar	r (84)m =	= (73)m -	+ (83)m	, watts							
(84)m=	729.64	781.78	822.38	861.16	882.26	856.17	817.54	778.89	744.28	709.69	693.37	700.49		(84)
7 Mo	an intar	rnal tomr	perature	(hoating	coacon)								
			neating p	`		,	from Tak	ole 0. Th	1 (°C)				21	(85)
•		_	٠.			_)ic 5, 111	1 (0)					
Utilisa	Jan	Feb	ains for l	T .		r -	Jul	۸۰۰۰	Con	Oct	Nov	Dec		
(96)m-	1	0.99	0.99	Apr 0.96	0.89	Jun 0.73	0.56	Aug 0.61	Sep 0.84	0.97	0.99	1		(86)
(86)m=	'	0.99	0.99	0.96	0.69	0.73	0.56	0.61	0.64	0.97	0.99	'	i	(00)
Mean			ature in	<u>_</u>	· `		i —	ı —	e 9c)	ı	ı	1	1	
(87)m=	20	20.11	20.3	20.57	20.81	20.95	20.99	20.99	20.9	20.61	20.26	19.97	J	(87)
Temp	erature	during h	neating p	eriods ir	n rest of	dwelling	from Ta	ıble 9, Ti	h2 (°C)					
(88)m=	20.06	20.06	20.07	20.07	20.07	20.08	20.08	20.08	20.08	20.07	20.07	20.07		(88)
Utilisa	ation fac	tor for a	ains for	rest of d	welling.	h2.m (se	e Table	9a)						
(89)m=	0.99	0.99	0.98	0.95	0.85	0.65	0.45	0.5	0.77	0.95	0.99	1		(89)
	:			<u> </u>	المدادة	n = T0 /5	ellevi ete	no 2 to 7		L 00)		<u>[</u>		
	19.15	19.26	ature in	19.72	19.94	20.06	20.08	20.08	20.02	19.76	19.42	19.13		(90)
(90)m=	19.15	19.26	19.46	19.72	19.94	20.00	20.06	20.06	<u> </u>	<u> </u>	g area ÷ (4	<u> </u>	0.11	(91)
										LA - LIVIII	g arca - (-	-) –	0.14	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=	19.28	19.38	19.58	19.84	20.07	20.19	20.21	20.21	20.15	19.88	19.54	19.25		(92)
Apply	adjustr	nent to t	he mear	interna	temper	ature fro	m Table	4e, whe	re appro	priate	•		1	
(93)m=	19.13	19.23	19.43	19.69	19.92	20.04	20.06	20.06	20	19.73	19.39	19.1		(93)
8. Spa	ace hea	iting requ	uirement											
				•		ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
trie ut		Feb	or gains Mar			lup	lul	Δυα	Son	Oct	Nov	Doo		
 Itilies	Jan		ains, hm	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(94)m=	0.99	0.99	0.98	0.94	0.84	0.65	0.45	0.49	0.77	0.95	0.99	0.99		(94)
` ′			, W = (94	<u> </u>	!	0.00	00	00	5 1	0.00	0.00	0.00		· /
(95)m=		772.39	802.93	810.02	745.04	554.15	364.78	383.62	570.57	671.39	683.53	696.23		(95)
			rnal tem		<u> </u>	<u> </u>								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat I	oss rate	e for me	an intern	ıal tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m	1		<u> </u>		
1			1397.89			577.12	367.21	387.76	627.95	977.17	1319.23	1605.73		(97)
Space	heatin	g require	ement fo	r each n	nonth, k\	Nh/mont	th = 0.02	24 x [(97)m – (95)m] x (4	1)m			
(98)m=	658.5	524.54	442.65	249.51	99.64	0	0	0	0	227.5	457.7	676.67		
				!				Tota	l per year	(kWh/year) = Sum(9	8) _{15,912} =	3336.71	(98)
Snace	heatin	a requir	ement in	k\/\/h/m²	2/vear								31.53	(99)
·		•			•								31.00	
			nts – Indi	ividual h	eating sy	ystems ı	ncluding	micro-C	HP)					
-	e heatii	•	ot from a	000040-	ماممینم/ب	montor	ovotom							(204)
	•		at from s			шептагу	-		(004)				0	(201)
	•		at from m	•	` '			(202) = 1 -					1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (204)	02) × [1 –	(203)] =			1	(204)

Efficiency of	main en	ace heat	ina evet	am 1								90.5	(206)
Efficiency of	-		•		n evetem	n %						0	(208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	┙`
Space heati	_!		<u> </u>			Jui	Aug	Sep	l Oct	INOV	Dec	l Kvvii/ye	aı
658.5	524.54	442.65	249.51	99.64	0	0	0	0	227.5	457.7	676.67		
(211)m = {[(9	8)m x (20)4)] } x 1	00 ÷ (20)6)									(211)
727.62	579.61	489.12	275.7	110.1	0	0	0	0	251.38	505.75	747.7		_
							Tota	I (kWh/yea	ar) =Sum(2	211) _{15,1012}	Ē	3686.98	(211)
Space heati = {[(98)m x (2	•		• •	month									
$= ((30) \text{III } \times (2))$ $(215) \text{m} = 0$	0	00 - (20	0	0	0	0	0	0	0	0	0		
	Į.		Į.				Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	<u> </u>	0	(215)
Water heatin	ng												_
Output from v		ter (calc	ulated a 142.49	bove) 137.69	120.25	112.85	127.47	128.4	147.89	159.72	172.75		
Efficiency of v			142.49	137.09	120.23	112.03	121.41	120.4	147.09	139.72	172.73	87.3	(216)
(217)m= 89.8	89.75	89.62	89.31	88.62	87.3	87.3	87.3	87.3	89.21	89.65	89.83	07.0	(217)
Fuel for wate	r heating,	, kWh/mo	onth						<u>I</u>	<u> </u>	l		
(219)m = (64)				155.20	107.74	120.26	146.00	147.00	165.77	170.46	100.01	1	
(219)m= 198.14	173.84	180.68	159.54	155.38	137.74	129.26	146.02 Tota	147.08 I = Sum(2	165.77 19a) =	178.16	192.31	1963.92	(219)
Annual total	s							·		Wh/year		kWh/year	
Space heatin	a fuel use	ed. main	system	1						•		· · · · ·	_
-	9	 ,	oyoto	ı								3686.98	
Water heating	•	•	Cycloni	ı								3686.98 1963.92]]
•	g fuel use	ed	·		t								
Water heating	g fuel use pumps, f	ed ans and	·		t						30		(230c)
Water heating	g fuel use pumps, f ing pump	ed ans and :	electric		t						30		(230c) (230e)
Water heating Electricity for central heating	g fuel use pumps, f ing pump fan-assis	ed ans and : sted flue	electric	keep-ho	t		sum	of (230a).	(230g) =				` '
Water heating Electricity for central heati boiler with a Total electrici	g fuel use pumps, f ing pump fan-assis ty for the	ed ans and : sted flue	electric	keep-ho	t		sum	of (230a).	(230g) =			1963.92	(230e)
Water heating Electricity for central heating boiler with a Total electricity Electricity for	g fuel use pumps, f ing pump fan-assis ty for the lighting	ed ans and : sted flue above, k	electric	keep-hot		+ (232).			(230g) =			75 493.59	(230e) (231) (232)
Water heating Electricity for central heating boiler with a Total electricity Electricity for Total delivere	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy	ed ans and : sted flue above, k	electric <wh yea<br="">ses (211</wh>	keep-hot r)(221)		+ (232).			(230g) =			1963.92 75	(230e)
Water heating Electricity for central heating boiler with a Total electricity Electricity for	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy	ed ans and : sted flue above, k	electric <wh yea<br="">ses (211</wh>	keep-hot r)(221)	+ (231)							75 493.59 6306.79	(230e) (231) (232)
Water heating Electricity for central heating boiler with a Total electricity Electricity for Total delivere	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy	ed ans and : sted flue above, k	electric <wh yea<br="">ses (211</wh>	keep-hot r)(221)	+ (231) Fu	el			Fuel P	rice		1963.92 75 493.59 6306.79	(230e) (231) (232)
Water heating Electricity for central heati boiler with a Total electricity for Total delivere	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy	ans and the sted flue above, he for all us vidual he	electric «Wh/yea ses (211 eating sy	keep-hot r)(221)	+ (231) Fu kW	el /h/year			Fuel P (Table	Price 12)	45	1963.92 75 493.59 6306.79 Fuel Cost £/year	(230e) (231) (232) (338)
Water heating Electricity for central heating boiler with a Total electricity for Total delivered 10a. Fuel co	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy osts - indiv	ans and the sted flue above, if the for all us vidual he	electric «Wh/yea ses (211 eating sy	keep-hot r)(221)	+ (231) Fu: kW: (211	el /h/year			Fuel P (Table	Price 12)	45 x 0.01 =	1963.92 75 493.59 6306.79 Fuel Cost £/year 128.31	(230e) (231) (232) (338) (240)
Water heating Electricity for central heating boiler with a Total electricity for Total delivere 10a. Fuel co	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy osts - indiv	ans and the sted flue above, if the for all us vidual he system 1 system 2	electric «Wh/yea ses (211 eating sy	keep-hot r)(221)	+ (231) Fu kW (211)	el /h/year I) ×			Fuel P (Table	Price 12)	x 0.01 = x 0.01 =	1963.92 75 493.59 6306.79 Fuel Cost £/year 128.31	(230e) (231) (232) (338) (240) (241)
Water heating Electricity for central heating boiler with a Total electricity for Total delivere 10a. Fuel co	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy ests - indir g - main s g - main s g - secon	ans and : sted flue above, i for all us vidual he system 1 system 2 dary	electric kWh/yea ses (211 eating sy	keep-hot r)(221)	+ (231) Fu kW (211 (213)	el /h/year l) x 3) x			Fuel P (Table 3.4	Price 12) 18	x 0.01 = x 0.01 = x 0.01 =	1963.92 75 493.59 6306.79 Fuel Cost £/year 128.31 0	(230e) (231) (232) (338) (240) (241) (242)
Water heating Electricity for central heating boiler with a Total electricity for Total delivere 10a. Fuel co	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy ests - indiv g - main s g - main s g - secon g cost (ot	ans and : sted flue above, i for all us vidual he system 1 system 2 dary her fuel)	electric kWh/yea ses (211 eating sy	keep-hot r)(221)	+ (231) Fui kW (211 (213 (215)	el /h/year / / / / / / / / / / / / / / / / / / /			Fuel P (Table	Price 12) 88	x 0.01 = x 0.01 = x 0.01 = x 0.01 =	1963.92 75 493.59 6306.79 Fuel Cost £/year 128.31	(230e) (231) (232) (338) (240) (241) (242) (247)
Water heating Electricity for central heating boiler with a Total electricity for Total delivere 10a. Fuel co	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy ests - indiv g - main s g - main s g - secon g cost (ot and elect	ans and : sted flue above, k for all us vidual he system 2 dary her fuel) cric keep-	electric kWh/yea ses (211 eating sy	keep-hot	+ (231) Fui kW (211 (213 (215 (219 (231	el /h/year // x // 3) × // x // 3) × // x // 3) × // x // 3) // x // 3 // 3	(237b)	=	Fuel P (Table 3.4 0 13. 3.4	Price 12) 18 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	1963.92 75 493.59 6306.79 Fuel Cost £/year 128.31 0 0 68.34 9.89	(230e) (231) (232) (338) (240) (241) (242)
Water heating Electricity for central heating boiler with a Total electricity for Total delivere 10a. Fuel co	g fuel use pumps, f ing pump fan-assis ity for the lighting ed energy osts - indiv g - main s g - main s g - secon g cost (ot and elect riff, list ea	ans and : sted flue above, k for all us vidual he system 2 dary her fuel) cric keep-	electric kWh/yea ses (211 eating sy	keep-hot	+ (231) Fui kW (211 (213 (215 (219 (231	el /h/year // x // 3) x // x // 3) x // 3) // as appl	(237b)	=	Fuel P (Table 3.4 0 13. 3.4	Price 12) 18 19 19 19	x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	1963.92 75 493.59 6306.79 Fuel Cost £/year 128.31 0 0 68.34 9.89	(230e) (231) (232) (338) (240) (241) (242) (247)

Additional standing charges (Table 12)	120 (251)		
Appendix Q items: repeat lines (253) and (2	254) as needed		
Total energy cost (24	45)(247) + (250)(254) =		391.65 (255)
11a. SAP rating - individual heating system	ms		
Energy cost deflator (Table 12)			0.42 (256)
Energy cost factor (ECF) [(2	(55) x (256)] ÷ [(4) + 45.0] =		1.09 (257)
SAP rating (Section 12)			84.79 (258)
12a. CO2 emissions – Individual heating s	systems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	796.39 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	424.21 (264)
Space and water heating	(261) + (262) + (263) + (26	64) =	1220.59 (265)
Electricity for pumps, fans and electric keep	o-hot (231) x	0.519 =	38.93 (267)
Electricity for lighting	(232) x	0.519 =	256.17 (268)
Total CO2, kg/year		sum of (265)(271) =	1515.69 (272)
CO2 emissions per m²		(272) ÷ (4) =	14.32 (273)
El rating (section 14)			87 (274)
13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	4498.11 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	2395.99 (264)
Space and water heating	(261) + (262) + (263) + (26	64) =	6894.1 (265)
Electricity for pumps, fans and electric keep	p-hot (231) x	3.07	230.25 (267)
Electricity for lighting	(232) x	0 =	1515.33 (268)
'Total Primary Energy		sum of (265)(271) =	8639.68 (272)

(272) ÷ (4) =

Primary energy kWh/m²/year

81.63

(273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 10 March 2021

Property Details: 116 Tweed [End] DCC2

Dwelling type: End-terrace House

Located in: England

Region: South East England

Cross ventilation possible: Yes Number of storeys: 2

Front of dwelling faces: North East

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Calculated 245.4

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach):

Dark-coloured curtain or roller blind
4 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 343.68 (P1)

Transmission heat loss coefficient: 60.2

Summer heat loss coefficient: 403.87 (P2)

Overhangs:

Ratio:	Z_overhangs:
0	1
0	1
0	1
0	1
0	1
0	1
	0

Solar shading:

Orientation:	Z blinds:	Solar access:	Overhangs:	Z summer:	
North East (W_133)	0.85	0.9	1	0.76	(P8)
North East (W_134)	0.85	0.9	1	0.76	(P8)
South West (W_135)	0.85	0.9	1	0.76	(P8)
North East (W_136)	0.85	0.9	1	0.76	(P8)
South West (W_137)	0.85	0.9	1	0.76	(P8)
South West (W_138)	0.85	0.9	1	0.76	(P8)

Solar gains:

Orientation		Area	Flux	g_	FF	Shading	Gains
North East (W_133)	0.9 x	1.84	105.45	0.72	0.7	0.76	67.33
North East (W_134)	0.9 x	1.28	105.45	0.72	0.7	0.76	46.84
South West (W_135)	0.9 x	1.31	126.97	0.72	0.7	0.76	57.72
North East (W_136)	0.9 x	2.43	105.45	0.72	0.7	0.76	88.92
South West (W_137)	0.9 x	1.31	126.97	0.72	0.7	0.76	57.72
South West (W_138)	0.9 x	1.31	126.97	0.72	0.7	0.76	57.72
						Total	376.24 (P3/P4)

Internal gains:

	June	July	August
Internal gains	502.22	481.59	491.82
Total summer gains	903.48	857.83	815.5 (P5)

SAP 2012 Overheating Assessment

Likelihood of high internal temperature	Not significant	Not significant	Not sig	gnificant
Threshold temperature	17.92	19.81	19.8	(P7)
Thermal mass temperature increment	0.28	0.28	0.28	
Mean summer external temperature (South East England)	15.4	17.4	17.5	
Summer gain/loss ratio	2.24	2.12	2.02	(P6)

Assessment of likelihood of high internal temperature: <u>Not significant</u>