## **Regulations Compliance Report**

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.5.33 *Printed on 10 March 2021 at 09:53:36* 

| Project Information    | on:                                        |                                                                                                                                                              |                                    |                     |
|------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|
| Assessed By:           | Natalie King (STF                          | RO034719)                                                                                                                                                    | Building Type:                     | Mid-terrace House   |
| Dwelling Details:      |                                            |                                                                                                                                                              |                                    |                     |
| NEW DWELLING           | DESIGN STAGE                               |                                                                                                                                                              | Total Floor Area: 7                | ′6m²                |
| Site Reference :       | Lavant View - The                          | e Spires, Chichester                                                                                                                                         | Plot Reference:                    | 114 Tavy [Mid] DCC4 |
| Address :              | Tavy [Mid]                                 |                                                                                                                                                              |                                    |                     |
| Client Details:        |                                            |                                                                                                                                                              |                                    |                     |
| Name:                  | Redrow Homes S                             | outhern Counties Limited                                                                                                                                     |                                    |                     |
| Address :              |                                            |                                                                                                                                                              |                                    |                     |
| -                      | s items included v<br>te report of regula  | vithin the SAP calculations.<br>tions compliance.                                                                                                            |                                    |                     |
| 1a TER and DER         |                                            |                                                                                                                                                              |                                    |                     |
|                        | ing system: Mains g                        | as                                                                                                                                                           |                                    |                     |
| Fuel factor: 1.00 (r   |                                            |                                                                                                                                                              | $17 E 4 kg/m^2$                    |                     |
| -                      | oxide Emission Rate<br>Dioxide Emission Ra |                                                                                                                                                              | 17.54 kg/m²<br>16.04 kg/m²         | ОК                  |
| 1b TFEE and DF         |                                            |                                                                                                                                                              | ro.o r kg/m                        | UN                  |
| Target Fabric Ene      | rgy Efficiency (TFE                        | Ξ)                                                                                                                                                           | 44.2 kWh/m²                        |                     |
| Dwelling Fabric Er     | nergy Efficiency (DF                       | EE)                                                                                                                                                          | 36.6 kWh/m <sup>2</sup>            |                     |
|                        |                                            |                                                                                                                                                              |                                    | ОК                  |
| 2 Fabric U-value       | S                                          | •                                                                                                                                                            | 110 I /                            |                     |
| Element<br>External    | wall                                       | <b>Average</b><br>0.28 (max. 0.30)                                                                                                                           | <b>Highest</b><br>0.28 (max. 0.70) | ОК                  |
| Party wal              |                                            | 0.20 (max. 0.30)<br>0.00 (max. 0.20)                                                                                                                         | -                                  | OK                  |
| Floor                  |                                            | 0.15 (max. 0.25)                                                                                                                                             | 0.15 (max. 0.70)                   | OK                  |
| Roof                   |                                            | 0.12 (max. 0.20)                                                                                                                                             | 0.21 (max. 0.35)                   | OK                  |
| Openings               | 6                                          | 1.23 (max. 2.00)                                                                                                                                             | 1.50 (max. 3.30)                   | OK                  |
| 2a Thermal brid        | ging                                       |                                                                                                                                                              |                                    |                     |
|                        |                                            | from linear thermal transmittan                                                                                                                              | ces for each junction              |                     |
| 3 Air permeabili       |                                            |                                                                                                                                                              |                                    |                     |
| Air permeal<br>Maximum | pility at 50 pascals                       |                                                                                                                                                              | 5.01 (design val<br>10.0           | ue)<br>OK           |
|                        |                                            |                                                                                                                                                              | 10.0                               | OR                  |
| 4 Heating efficie      |                                            | Database: (rev 473, produc                                                                                                                                   | t index 017020);                   |                     |
| Main Heatir            | iy system.                                 | Boiler systems with radiator<br>Brand name: Ideal<br>Model: LOGIC COMBI<br>Model qualifier: ESP1 35<br>(Combi)<br>Efficiency 89.6 % SEDBUK<br>Minimum 88.0 % | rs or underfloor heating - ma      | ains gas<br>OK      |
| Secondary              | heating system:                            | None                                                                                                                                                         |                                    |                     |

# **Regulations Compliance Report**

| Cylinder insulation          |                          |                    |    |
|------------------------------|--------------------------|--------------------|----|
| Hot water Storage:           | No cylinder              |                    |    |
| Controls                     |                          |                    |    |
|                              |                          |                    |    |
| Space heating controls       | Programmer, room therm   | nostat and TRVs    | OK |
| Hot water controls:          | No cylinder thermostat   |                    |    |
|                              | No cylinder              |                    |    |
| Boiler interlock:            | Yes                      |                    | OK |
| Low energy lights            |                          |                    |    |
| Percentage of fixed lights v | vith low-energy fittings | 100.0%             |    |
| Minimum                      |                          | 75.0%              | OK |
| Mechanical ventilation       |                          |                    |    |
| Not applicable               |                          |                    |    |
| Summertime temperature       |                          |                    |    |
| Overheating risk (South Ea   | st England):             | Not significant    | OK |
| sed on:                      |                          |                    |    |
| Overshading:                 |                          | Average or unknown |    |
| Windows facing: North Eas    | t                        | 3.55m <sup>2</sup> |    |
| Windows facing: South We     | st                       | 3.12m <sup>2</sup> |    |
| Ventilation rate:            |                          | 8.00               |    |
| Blinds/curtains:             |                          | None               |    |
| Key features                 |                          |                    |    |
| Thermal bridging             |                          | 0.038 W/m²K        |    |
| Doors U-value                |                          | 1.1 W/m²K          |    |
| Roofs U-value                |                          | 0.11 W/m²K         |    |
|                              |                          |                    |    |

## **Code for Sustainable Homes Report**

For use with Nov 2010 addendum 2014 England

| Assessor and House Details          |                            |                  |            |  |  |  |  |  |  |  |  |
|-------------------------------------|----------------------------|------------------|------------|--|--|--|--|--|--|--|--|
| Assessor Name:<br>Property Address: | Natalie King<br>Tavy [Mid] | Assessor Number: | STRO034719 |  |  |  |  |  |  |  |  |
| Buiding regulation as               | sessment                   |                  |            |  |  |  |  |  |  |  |  |
|                                     |                            |                  | kg/m²/year |  |  |  |  |  |  |  |  |
| TER                                 |                            |                  | 17.54      |  |  |  |  |  |  |  |  |
| DER                                 |                            |                  | 16.04      |  |  |  |  |  |  |  |  |
| ENE 1 Assessment - I                | Dwelling Emission Rate     |                  |            |  |  |  |  |  |  |  |  |

### Total Energy Type CO, Emissions for Codes Levels 1 - 5

| Total Lifergy Type CO <sub>2</sub> Lifestons for Codes Levels 1 - 5  | %   | kg/m²/year |       |
|----------------------------------------------------------------------|-----|------------|-------|
| DER from SAP 2012 DER Worksheet                                      |     | 16.04      | (ZC1) |
| TER                                                                  |     | 17.54      |       |
| Residual CO2 emissions offset from biofuel CHP                       |     | 0          | (ZC5) |
| CO2 emissions offset from additional allowable electricty generation |     | 0          | (ZC7) |
| Total CO2 emissions offset from SAP Section 16 allowances            |     | 0          |       |
| DER accounting for SAP Section 16 allowances                         |     | 16.04      |       |
| % improvement DER/TER                                                | 8.6 |            |       |

### Total Energy Type CO2 Emissions for Codes Levels 6

|                                               | kg/m²/year |       |
|-----------------------------------------------|------------|-------|
| DER accounting for SAP Section 16 allowances  | 16.04      | (ZC1) |
| CO2 emissions from appliances, equation (L14) | 16.38      | (ZC2) |
| CO2 emissions from cooking, equation (L16)    | 2.32       | (ZC3) |
| Net CO2 emissions                             | 36.8       | (ZC8) |

### Result:

### Credits awarded for ENE 1 = 1.4

Code Level = 3

### **ENE 2 - Fabric energy Efficiency**

### Fabric energy Efficiency: 36.61

### Credits awarded for ENE 2 = 7.6

ENE 7 - Low or Zero Carbon (LZC) Technologies

### **Reduction in CO2 Emissions**

|                             | % | kg/m²/year |
|-----------------------------|---|------------|
| Standard Case CO2 emissions |   | 36.8       |
| Standard DER                |   | 18.1       |
| Actual Case CO2 emissions   |   | 36.8       |
| Actual DER                  |   | 18.1       |
| Reduction in CO2 emissions  | 0 |            |

#### Credits awarded for ENE 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

The following requirements must also be met:

Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.

• Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.

• Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.

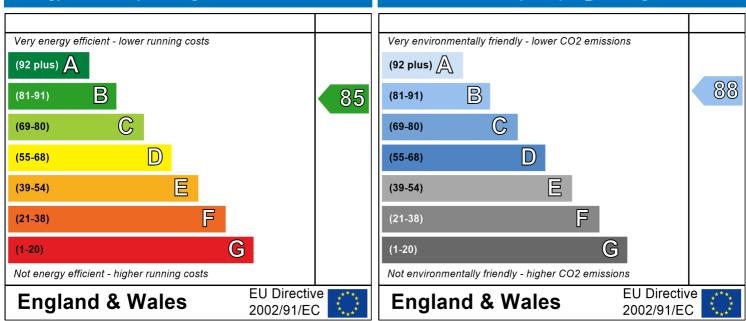
• All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.



Tavy [Mid]


Dwelling type: Date of assessment: Produced by: Total floor area: Mid-terrace House 08 November 2019 Natalie King 76 m<sup>2</sup>

Environmental Impact (CO<sub>2</sub>) Rating

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

### **Energy Efficiency Rating**



The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be. The environmental impact rating is a measure of a home's impact on the environment in terms of carbon dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

## **SAP Input**

| Property Details: 11                 | 4 Tavy [Mid] D               | OCC4      |                                |                            |                        |                      |                   |              |  |  |
|--------------------------------------|------------------------------|-----------|--------------------------------|----------------------------|------------------------|----------------------|-------------------|--------------|--|--|
| Address:                             |                              | -         | / [Mid]                        |                            |                        |                      |                   |              |  |  |
| Located in:                          |                              | Engl      | and<br>th East England         |                            |                        |                      |                   |              |  |  |
| Region:<br>UPRN:                     |                              | 30u       | in east england                |                            |                        |                      |                   |              |  |  |
| Date of assessme                     | ent:                         | 08 N      | lovember 2019                  |                            |                        |                      |                   |              |  |  |
| Date of certificate:                 |                              |           | 10 March 2021                  |                            |                        |                      |                   |              |  |  |
| Assessment type                      |                              |           | dwelling design stag           | e                          |                        |                      |                   |              |  |  |
| Transaction type<br>Tenure type:     | 2:                           |           | New dwelling<br>Unknown        |                            |                        |                      |                   |              |  |  |
| Related party dis                    | sclosure                     |           | loyed by the professi          | onal dealing with          | n the property tra     | nsaction             |                   |              |  |  |
| Thermal Mass Pa                      |                              |           | ulated 140.68                  | 5                          |                        |                      |                   |              |  |  |
| Water use <= 12                      | 25 litres/per                |           | True                           |                            |                        |                      |                   |              |  |  |
| PCDF Version:                        |                              | 473       |                                |                            |                        |                      |                   |              |  |  |
| Property description                 | 1:                           |           |                                |                            |                        |                      |                   |              |  |  |
| Dwelling type:                       |                              | Hou       |                                |                            |                        |                      |                   |              |  |  |
| Detachment:                          |                              |           | terrace                        |                            |                        |                      |                   |              |  |  |
| Year Completed:                      |                              | 202       | 1                              |                            |                        |                      |                   |              |  |  |
| Floor Location:                      |                              | Flo       | or area:                       |                            | <b>.</b>               |                      |                   |              |  |  |
|                                      |                              |           | _                              |                            | Storey height          | :                    |                   |              |  |  |
| Floor 0                              |                              | 38 r      |                                |                            | 2.31 m                 |                      |                   |              |  |  |
| Floor 1                              |                              |           | 3 m <sup>2</sup> 2.61 m        |                            |                        |                      |                   |              |  |  |
| Living area:<br>Front of dwelling fa | aces:                        |           | 8 m² (fraction 0.263<br>h East | 5)                         |                        |                      |                   |              |  |  |
| Opening types:                       |                              |           |                                |                            |                        |                      |                   |              |  |  |
| Name:                                | Source:                      |           | Туре:                          | Glazing:                   |                        | Argon:               | Fram              |              |  |  |
| Door                                 | Manufacturer                 |           | Solid                          |                            | 0.2, hard coat         | Yes                  | PVC-L             |              |  |  |
| Rear<br>Front                        | Manufacturer<br>Manufacturer |           | Half glazed<br>Windows         |                            | 0.2, hard coat         | Yes<br>Yes           | PVC-L             |              |  |  |
| Rear                                 | Manufacturer                 |           | Windows                        |                            | = 0.2, hard coat       | Yes                  |                   |              |  |  |
| Nome                                 | Cont                         |           | Froma Foota                    |                            |                        | A                    | No. a             | f Ononingo.  |  |  |
| Name:<br>Door                        | <b>Gap:</b><br>16mm o        | r more mm | Frame Facto                    | <b>r: g-value:</b><br>0.72 | <b>U-value:</b><br>1.1 | <b>Area:</b><br>2.06 | <b>NO. C</b><br>1 | of Openings: |  |  |
| Rear                                 |                              | r more mm | 0.7                            | 0.72                       | 1.5                    | 1.91                 | 1                 |              |  |  |
| Front                                | 16mm o                       |           | 0.7                            | 0.76                       | 1.2                    | 3.55                 | 1                 |              |  |  |
| Rear                                 | 16mm o                       | r more    | 0.7                            | 0.76                       | 1.2                    | 3.12                 | 1                 |              |  |  |
| Name:                                | Type-Nam                     | 0.        | Location:                      | Orient:                    |                        | Width:               | Hoia              | ht.          |  |  |
| Door                                 | туре-матт                    | e.        | Walls                          | North East                 |                        | 0                    | Heig<br>0         | 111.         |  |  |
| Rear                                 |                              |           | Walls                          | South West                 |                        | 0                    | 0                 |              |  |  |
| Front                                |                              |           | Walls                          | North East                 |                        | 0                    | 0                 |              |  |  |
| Rear                                 |                              |           | Walls                          | South West                 |                        | 0                    | 0                 |              |  |  |
| Overshading:                         |                              | Ave       | age or unknown                 |                            |                        |                      |                   |              |  |  |
| Opaque Elements:                     |                              |           |                                |                            |                        |                      |                   |              |  |  |
| Туре:                                | Gross area:                  | Openings  | : Net area:                    | U-value:                   | Ru value:              | Curtain              | wall              | Kappa:       |  |  |
| External Elements                    | טא מושמ.                     | opennigs  |                                | U-value.                   | Nu value.              | Guitall              | vvaii.            | карра.       |  |  |
| Walls                                | 41.39                        | 10.64     | 30.75                          | 0.28                       | 0                      | False                |                   | 48           |  |  |
| Sloping                              | 5.62                         | 0         | 5.62                           | 0.21                       | 0                      |                      |                   | 9            |  |  |
| Plane ceiling                        | 33.37                        | 0         | 33.37                          | 0.11                       | 0                      |                      |                   | 9            |  |  |
| Floor                                | 38                           |           |                                | 0.15                       |                        |                      |                   | 75           |  |  |
| Internal Elements<br>Stud            | 125.28                       |           |                                |                            |                        |                      |                   | 9            |  |  |
|                                      | -                            |           |                                |                            |                        |                      |                   |              |  |  |

# **SAP Input**

| Ceiling<br>Floor | 38    |  | 9  |
|------------------|-------|--|----|
| Floor            | 38    |  | 18 |
| Party Elements   |       |  |    |
| Party Wall       | 80.44 |  | 48 |
|                  |       |  |    |
|                  |       |  |    |

### Thermal bridges:

| Thermal bridges:                              |                                                                                                                                                              |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Thermal bridges:                              | User-defined (individual PSI-values) Y-Value = 0.0381<br>Length Psi-value<br>4.3 0.236 E1 Steel lintel with perforated steel base plate<br>6.79 0.01 E3 Sill |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
|                                               |                                                                                                                                                              |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
|                                               | 18.3                                                                                                                                                         | 0.005                                                                                                                                                                      | E4                                | Jamb                                                                                             |  |  |  |  |  |
|                                               | 9.22                                                                                                                                                         | 0.089                                                                                                                                                                      | E5                                | Ground floor (normal)                                                                            |  |  |  |  |  |
|                                               | 9.22                                                                                                                                                         | -0.002                                                                                                                                                                     | E6                                | Intermediate floor within a dwelling                                                             |  |  |  |  |  |
|                                               | 17.95                                                                                                                                                        | 0.041                                                                                                                                                                      | E18                               | Party wall between dwellings                                                                     |  |  |  |  |  |
|                                               | 9.22                                                                                                                                                         | 0.017                                                                                                                                                                      | E11                               | Eaves (insulation at rafter level)                                                               |  |  |  |  |  |
|                                               | 4.38                                                                                                                                                         | 0.064                                                                                                                                                                      | E2                                | Other lintels (including other steel lintels)                                                    |  |  |  |  |  |
|                                               | 16.48                                                                                                                                                        | 0.043                                                                                                                                                                      | P1                                | Ground floor                                                                                     |  |  |  |  |  |
|                                               | 14.48                                                                                                                                                        | 0.035                                                                                                                                                                      | P4                                | Roof (insulation at ceiling level)                                                               |  |  |  |  |  |
|                                               | 2.44                                                                                                                                                         | 0.058                                                                                                                                                                      | P5                                | Roof (insulation at rafter level)                                                                |  |  |  |  |  |
| Ventilation:                                  |                                                                                                                                                              |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Pressure test:                                | Yes (As des                                                                                                                                                  | signed)                                                                                                                                                                    |                                   |                                                                                                  |  |  |  |  |  |
| Ventilation:                                  | Natural ven                                                                                                                                                  | tilation (extrac                                                                                                                                                           | t fans)                           |                                                                                                  |  |  |  |  |  |
| Number of chimneys:                           | 0                                                                                                                                                            |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Number of open flues:                         | 0                                                                                                                                                            |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Number of fans:                               | 3                                                                                                                                                            |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Number of passive stacks:                     | 0                                                                                                                                                            |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Number of sides sheltered:                    | 2                                                                                                                                                            |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Pressure test:                                | 5.01                                                                                                                                                         |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Main heating system:                          |                                                                                                                                                              |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Main heating system:<br>Main heating Control: | Gas boilers<br>Fuel: mains<br>Info Source<br>Database: (<br>Brand name<br>Model: LOG<br>Model quali<br>(Combi boil<br>Systems wi<br>Central hea              | and oil boilers<br>gas<br>Boiler Databa<br>(rev 473, produ<br>E Ideal<br>GIC COMBI<br>fier: ESP1 35<br>er)<br>th radiators<br>ting pump : 20<br>v temperature:<br>ock: Yes | ase<br>uct index (<br>)13 or late | derfloor heating<br>017929) Efficiency: Winter 87.3 % Summer: 90.5<br>er<br>ow temperature >45°C |  |  |  |  |  |
| Main heating Control:                         | Programme                                                                                                                                                    | r, room therm                                                                                                                                                              | ostat and                         | TRVs                                                                                             |  |  |  |  |  |
| Main heating control.                         | Control cod                                                                                                                                                  |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Secondary heating system:                     |                                                                                                                                                              |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Secondary heating system:                     | None                                                                                                                                                         |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Water heating:                                |                                                                                                                                                              |                                                                                                                                                                            |                                   |                                                                                                  |  |  |  |  |  |
| Water heating:                                | From main<br>Water code<br>Fuel :mains<br>No hot wate<br>Solar panel                                                                                         | agas<br>er cylinder                                                                                                                                                        | 1                                 |                                                                                                  |  |  |  |  |  |

## **SAP Input**

#### Others:

Electricity tariff: In Smoke Control Area: Conservatory: Low energy lights: Terrain type: EPC language: Wind turbine: Photovoltaics: Assess Zero Carbon Home: Standard Tariff Unknown No conservatory 100% Low rise urban / suburban English No None No

| User Details:                     |           |            |                 |                       |                    |            |               |              |              |                       |            |                                  |      |
|-----------------------------------|-----------|------------|-----------------|-----------------------|--------------------|------------|---------------|--------------|--------------|-----------------------|------------|----------------------------------|------|
| Assessor Na<br>Software Na        | 5         |            |                 |                       |                    |            |               | rsion:       |              |                       |            |                                  |      |
|                                   |           | Tei        |                 |                       | PI                 | operty     | Address       | : 114 Ta     | vy [iviid]   | DCC4                  |            |                                  |      |
| Address :<br>1. Overall dwel      | lling dir |            | ry [Mid]        |                       |                    |            |               |              |              |                       |            |                                  |      |
| T. Overall dwel                   | liing air | nension    | 5.              |                       |                    | A #0       | a (m²)        |              |              | iaht(m)               |            | Volume(m3)                       |      |
| Ground floor                      |           |            |                 |                       |                    | Are        | a(m²)         | (1a) x       |              | <b>ight(m)</b><br>.31 | (2a) =     | Volume(m <sup>3</sup> )<br>87.78 | (3a) |
|                                   |           |            |                 |                       |                    |            | 30            | ]            |              |                       | J          |                                  | 1    |
| First floor                       |           |            | 38              | (1b) x                | 2                  | .61        | (2b) =        | 99.18        | (3b)         |                       |            |                                  |      |
| Total floor area                  | TFA =     | (1a)+(1b   | o)+(1c)+        | (1d)+(1e              | e)+(1n             | )          | 76            | (4)          |              |                       |            |                                  |      |
| Dwelling volume                   | Ð         |            |                 |                       |                    |            |               | (3a)+(3b     | )+(3c)+(3d   | l)+(3e)+              | .(3n) =    | 186.96                           | (5)  |
| 2. Ventilation ra                 | ate:      |            |                 |                       |                    |            |               |              |              |                       |            |                                  |      |
|                                   |           |            | main<br>neating |                       | econdar<br>leating | у          | other         |              | total        |                       |            | m <sup>3</sup> per hour          |      |
| Number of chim                    | ineys     | Г          | 0               | +                     | 0                  | ] + [      | 0             | ] = [        | 0            | X 4                   | 40 =       | 0                                | (6a) |
| Number of oper                    | n flues   | Ī          | 0               | _<br>  + [            | 0                  | ī + Ē      | 0             | -<br>  - [   | 0            | x2                    | 20 =       | 0                                | (6b) |
| Number of inter                   | mittent   | ∟<br>fans  |                 |                       |                    |            |               | - L<br>T     | 3            | x                     | 10 =       | 30                               | (7a) |
| Number of pass                    | ive ver   | nts        |                 |                       |                    |            |               |              | 0            | x ^                   | 10 =       | 0                                | (7b) |
| Number of fluele                  |           |            |                 |                       |                    |            |               |              | 0            | x 4                   | 40 =       | 0                                | (7c) |
|                                   | <u>g</u>  |            |                 |                       |                    |            |               | L            |              |                       |            | Ů                                | [()  |
|                                   |           |            |                 |                       |                    |            |               |              |              |                       | Air ch     | nanges per hou                   | r    |
| Infiltration due to               | o chimr   | neys, flu  | es and f        | ans = <mark>(6</mark> | a)+(6b)+(7         | a)+(7b)+   | (7c) =        | Г            | 30           | <u> </u>              | ÷ (5) =    | 0.16                             | (8)  |
| lf a pressurisation               |           |            |                 |                       | ed, proceed        | l to (17), | otherwise     | continue fr  | rom (9) to ( | (16)                  |            |                                  |      |
| Number of sto                     | -         | the dw     | elling (n       | 5)                    |                    |            |               |              |              |                       |            | 0                                | (9)  |
| Additional infi                   |           |            |                 |                       |                    |            |               |              |              | [(9)                  | -1]x0.1 =  | 0                                | (10) |
| Structural infil                  |           |            |                 |                       |                    |            |               |              | uction       |                       |            | 0                                | (11) |
| if both types o<br>deducting area |           |            |                 |                       | ponding to         | the grea   | ter wall are  | a (atter     |              |                       |            |                                  |      |
| If suspended                      |           | 0 /        | •               |                       | ed) or 0.          | 1 (seal    | ed), else     | enter 0      |              |                       |            | 0                                | (12) |
| If no draught                     | lobby, e  | enter 0.0  | )5, else (      | enter 0               |                    |            |               |              |              |                       |            | 0                                | (13) |
| Percentage of                     | f windo   | ws and     | doors dr        | aught st              | ripped             |            |               |              |              |                       |            | 0                                | (14) |
| Window infiltra                   | ation     |            |                 |                       |                    |            | 0.25 - [0.2   | 2 x (14) ÷ 1 | = [00        |                       |            | 0                                | (15) |
| Infiltration rate                 | Э         |            |                 |                       |                    |            | (8) + (10)    | + (11) + (1  | 12) + (13) - | + (15) =              |            | 0                                | (16) |
| Air permeabili                    | •         |            | •               |                       |                    | •          | •             | •            | etre of e    | nvelope               | area       | 5.01000022888184                 | (17) |
| If based on air p                 | permea    | bility val | ue, then        | (18) = [(1            | 7) ÷ 20]+(8        | ), otherw  | /ise (18) = ( | (16)         |              |                       |            | 0.41                             | (18) |
| Air permeability v                |           |            | ressurisati     | on test has           | s been don         | e or a de  | gree air pe   | ermeability  | is being u   | sed                   |            |                                  | ,    |
| Number of sides                   | s shelte  | ered       |                 |                       |                    |            | (20) – 1 -    | [0.075 x (1  | 10)1 -       |                       |            | 2                                | (19) |
| Shelter factor                    |           | enting of  | altar faa       | 4.0.4                 |                    |            |               | 0.85         | (20)         |                       |            |                                  |      |
| Infiltration rate in              | -         | •          |                 |                       | ı                  |            | (21) = (18    | y ⊼ (∠0) =   |              |                       |            | 0.35                             | (21) |
| Infiltration rate n               |           |            | · ·             |                       |                    | 11         | ۸             | 0.55         | 0+           | Nett                  | Dee        | 1                                |      |
| Jan                               | Feb       | Mar        | Apr             | May                   | Jun                | Jul        | Aug           | Sep          | Oct          | Nov                   | Dec        | J                                |      |
| Monthly average                   |           |            | i               |                       |                    |            |               | <u> </u>     |              |                       | . <u> </u> | 1                                |      |
| (22)m= 5.1                        | 5         | 4.9        | 4.4             | 4.3                   | 3.8                | 3.8        | 3.7           | 4            | 4.3          | 4.5                   | 4.7        |                                  |      |

| Wind F    | actor (2    | 22a)m =      | (22)m ÷  | 4                                                    |            |                |                |               |             |                |                  |                    |        |           |
|-----------|-------------|--------------|----------|------------------------------------------------------|------------|----------------|----------------|---------------|-------------|----------------|------------------|--------------------|--------|-----------|
| (22a)m=   | 1.27        | 1.25         | 1.23     | 1.1                                                  | 1.08       | 0.95           | 0.95           | 0.92          | 1           | 1.08           | 1.12             | 1.18               | ]      |           |
| Adjuste   | ed infiltra | ation rat    | e (allow | ing for sł                                           | nelter an  | d wind s       | speed) =       | : (21a) x     | (22a)m      |                |                  |                    |        |           |
| ,         | 0.45        | 0.44         | 0.43     | 0.38                                                 | 0.38       | 0.33           | 0.33           | 0.32          | 0.35        | 0.38           | 0.39             | 0.41               | ]      |           |
|           |             |              | -        | rate for t                                           | he appli   | cable ca       | ise            |               | <u> </u>    | I              |                  |                    | ]      |           |
|           |             | al ventila   |          |                                                      |            |                |                |               |             |                |                  |                    |        | 23a)      |
|           |             |              | • • •    | endix N, (2                                          | , ,        | , ,            |                |               |             | o) = (23a)     |                  |                    |        | 23b)      |
|           |             |              | •        | ciency in %                                          | •          |                |                |               |             |                |                  |                    |        | 23c)      |
| ,         |             |              | 1        | 1                                                    |            | r              | 1              | 1             | ŕ           | 1              | <u>, , ,</u>     | 1 – (23c)          | -      | 04-)      |
| (24a)m=   | 0           | 0            | 0        | 0                                                    | 0          | 0              | 0              | 0             | 0           | 0              | 0                | 0                  |        | 24a)      |
| ,         |             |              | 1        | entilation                                           |            | · · · · · ·    | 1              | T T           | ŕ           | <del>, ,</del> | <u> </u>         |                    | 1 ,    | 046)      |
| (24b)m=   | 0           | 0            | 0        | 0                                                    | 0          | 0              | 0              | 0             | 0           | 0              | 0                | 0                  |        | 24b)      |
| ,         |             |              |          | ntilation of the | •          | •              |                |               |             | .5 × (23       | o)               |                    |        |           |
| (24c)m=   | 0           | 0            | 0        | 0                                                    | 0          | 0              | 0              | 0             | 0           | 0              | 0                | 0                  | ] (    | 24c)      |
| d) If     | natural     | ventilati    | n or wh  | nole hous                                            | e positiv  | /e input       | ı<br>ventilati | on from       | loft        | Į              | 1                | Į                  | 1      |           |
| ,         |             |              |          | )m = (22l                                            |            | •              |                |               |             | 0.5]           |                  |                    | _      |           |
| (24d)m=   | 0.6         | 0.6          | 0.59     | 0.57                                                 | 0.57       | 0.56           | 0.56           | 0.55          | 0.56        | 0.57           | 0.58             | 0.58               | (      | 24d)      |
| Effec     | ctive air   | change       | rate - e | nter (24a                                            | ) or (24t  | o) or (24      | c) or (24      | ld) in bo     | x (25)      | -              |                  |                    | _      |           |
| (25)m=    | 0.6         | 0.6          | 0.59     | 0.57                                                 | 0.57       | 0.56           | 0.56           | 0.55          | 0.56        | 0.57           | 0.58             | 0.58               | (      | 25)       |
| 3. He     | at losse    | s and he     | eat loss | paramet                                              | er:        |                |                |               |             |                |                  |                    |        |           |
| ELEN      | IENT        | Gros<br>area |          | Openin<br>rr                                         | -          | Net Ar<br>A ,r |                | U-val<br>W/m2 |             | A X U<br>(W/   |                  | k-value<br>kJ/m²·I |        |           |
| Doors     | Type 1      |              |          |                                                      |            | 2.06           | x              | 1.1           | =           | 2.266          |                  |                    | (      | 26)       |
| Doors     | Type 2      |              |          |                                                      |            | 1.91           | x              | 1.5           | =           | 2.865          |                  |                    | (      | 26)       |
| Window    | ws Type     | e 1          |          |                                                      |            | 3.55           |                | /[1/( 1.2 )+  | 0.04] =     | 4.06           |                  |                    | (      | 27)       |
| Window    | ws Type     | 2            |          |                                                      |            | 3.12           | x1             | /[1/( 1.2 )+  | 0.04] =     | 3.57           |                  |                    | (      | 27)       |
| Floor     |             |              |          |                                                      |            | 38             | ×              | 0.15          |             | 5.7            |                  | 75                 | 2850 ( | 28)       |
| Walls     |             | 41.3         | 39       | 10.6                                                 | 4          | 30.75          | 5 X            | 0.28          | =           | 8.61           |                  | 48                 |        | 29)       |
| Roof 1    | vpe1        | 5.6          |          | 0                                                    |            | 5.62           | x              | 0.21          | =           | 1.18           |                  | 9                  |        | 30)       |
| Roof 1    |             | 33.3         |          | 0                                                    |            | 33.37          |                | 0.11          | =           | 3.67           |                  | 9                  |        | ,<br>30)  |
|           |             | lements      |          |                                                      |            | 118.3          |                |               |             |                | (                | -                  |        | ý<br>31)  |
| Party v   | vall        |              |          |                                                      |            | 80.44          | 4 ×            | 0             |             | 0              |                  | 48                 |        | 32)       |
| Interna   | I wall **   |              |          |                                                      |            | 125.2          | 8              | L             |             |                | I                | 9                  |        | 32c)      |
| Interna   |             |              |          |                                                      |            | 38             |                |               |             |                | [                | 18                 |        | ,<br>32d) |
|           | l ceiling   |              |          |                                                      |            | 38             |                |               |             |                | l<br>[           | 9                  |        | 32e)      |
| * for win | dows and    | roof wind    |          |                                                      |            | alue calcul    | lated using    | g formula 1   | /[(1/U-valu | ue)+0.04] a    | l<br>as given in | 9<br>n paragraph   |        | )         |
|           |             |              |          | nternal wal                                          | ls and par | titions        |                | (06) (00)     | ) (22)      |                |                  |                    |        |           |
| rabric    | neat los    | ss, VV/K     | = S (A x | U)                                                   |            |                |                | (26)(30       | ) + (3∠) =  |                |                  |                    | 31.93  | 33)       |

Heat capacity  $Cm = S(A \times k)$ 

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m<sup>2</sup>K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

| can be                             | used inste  | ad of a de   | tailed calc        | ulation.     |             |                        |             |                                                                                             |            |                        |                        |         |         |      |
|------------------------------------|-------------|--------------|--------------------|--------------|-------------|------------------------|-------------|---------------------------------------------------------------------------------------------|------------|------------------------|------------------------|---------|---------|------|
| Therm                              | al bridg    | əs : S (L    | x Y) cal           | culated      | using Ap    | pendix l               | K           |                                                                                             |            |                        |                        |         | 4.51    | (36) |
| if details                         | s of therma | al bridging  | are not kn         | own (36) =   | = 0.05 x (3 | 1)                     |             |                                                                                             |            |                        |                        |         |         |      |
| Total f                            | abric he    | at loss      |                    |              |             |                        |             |                                                                                             | (33) +     | (36) =                 |                        |         | 36.44   | (37) |
| Ventila                            | ation hea   | at loss ca   | alculated          | monthl       | /           |                        |             |                                                                                             | (38)m      | = 0.33 × (             | 25)m x (5)             |         |         |      |
|                                    | Jan         | Feb          | Mar                | Apr          | May         | Jun                    | Jul         | Aug                                                                                         | Sep        | Oct                    | Nov                    | Dec     |         |      |
| (38)m=                             | 36.97       | 36.73        | 36.5               | 35.4         | 35.2        | 34.25                  | 34.25       | 34.07                                                                                       | 34.61      | 35.2                   | 35.61                  | 36.05   |         | (38) |
| Heat t                             | ransfer o   | coefficie    | nt, W/K            |              |             | -                      |             |                                                                                             | (39)m      | = (37) + (3            | 38)m                   |         |         |      |
| (39)m=                             | 73.4        | 73.17        | 72.93              | 71.84        | 71.63       | 70.68                  | 70.68       | 70.5                                                                                        | 71.05      | 71.63                  | 72.05                  | 72.48   |         |      |
| Heat le                            | oss para    | meter (H     | ·<br>HLP), W/      | /m²K         |             |                        |             |                                                                                             |            | Average =<br>= (39)m ÷ | Sum(39)1.              | 12 /12= | 71.84   | (39) |
| (40)m=                             | 0.97        | 0.96         | 0.96               | 0.95         | 0.94        | 0.93                   | 0.93        | 0.93                                                                                        | 0.93       | 0.94                   | 0.95                   | 0.95    |         |      |
| ( - )                              |             |              |                    |              |             |                        |             |                                                                                             |            | Average =              | Sum(40)1               |         | 0.95    | (40) |
| Number of days in month (Table 1a) |             |              |                    |              |             |                        |             |                                                                                             |            |                        |                        |         |         |      |
|                                    | Jan         | Feb          | Mar                | Apr          | May         | Jun                    | Jul         | Aug                                                                                         | Sep        | Oct                    | Nov                    | Dec     |         |      |
| (41)m=                             | 31          | 28           | 31                 | 30           | 31          | 30                     | 31          | 31                                                                                          | 30         | 31                     | 30                     | 31      |         | (41) |
|                                    |             |              |                    | -            |             |                        |             |                                                                                             |            |                        |                        |         |         |      |
| 4. Wa                              | ater hea    | tina ene     | rgy requ           | irement:     |             |                        |             |                                                                                             |            |                        |                        | kWh/ye  | ear:    |      |
|                                    |             | Ŭ            |                    |              |             |                        |             |                                                                                             |            |                        |                        |         | •       |      |
|                                    |             | ipancy, I    |                    | [1 0)/0      | ( 0 0002    | 040 v /TI              | - 120       |                                                                                             | 012 v /    | TEA 40                 |                        | 38      |         | (42) |
|                                    | A £ 13.     |              | + 1.70 x           | [i - exp     | (-0.0003    | 949 X (11              | -A -13.9    | )2)] + 0.0                                                                                  | JU13 X (   | IFA - 13.              | .9)                    |         |         |      |
|                                    |             |              | ater usag          | ge in litre  | es per da   | ay Vd,av               | erage =     | (25 x N)                                                                                    | + 36       |                        | 90                     | .79     |         | (43) |
|                                    |             | -            |                    |              |             | -                      | -           | to achieve                                                                                  | a water us | se target o            | f                      |         |         |      |
| not mor                            | e that 125  | litres per   | person pei         | r day (all w | ater use, i | not and co             | ia)         |                                                                                             |            | 1                      | 1                      | 1       | 1       |      |
|                                    | Jan         | Feb          | Mar                | Apr          | May         | Jun                    | Jul         | Aug                                                                                         | Sep        | Oct                    | Nov                    | Dec     |         |      |
| Hot wat                            | er usage i  | n litres pei | r day for ea       | ach month    | Vd,m = fa   | ctor from              | Table 1c x  | (43)                                                                                        |            |                        | i                      |         |         |      |
| (44)m=                             | 99.87       | 96.23        | 92.6               | 88.97        | 85.34       | 81.71                  | 81.71       | 85.34                                                                                       | 88.97      | 92.6                   | 96.23                  | 99.87   |         | _    |
| Energy                             | content of  | hot water    | used - cal         | culated m    | onthly — 1  | 100 v Vd r             | т х пт х Г  | )<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>)<br>) |            |                        | m(44) <sub>112</sub> = |         | 1089.44 | (44) |
|                                    |             | r            | r                  |              | -           | r                      | r           |                                                                                             |            |                        | 1                      |         | l       |      |
| (45)m=                             | 148.1       | 129.53       | 133.66             | 116.53       | 111.81      | 96.48                  | 89.41       | 102.6                                                                                       | 103.82     | 120.99                 | 132.07                 | 143.42  |         |      |
| lf instan                          | taneous w   | ater heati   | na at point        | of use (no   | hot water   | <sup>r</sup> storaae). | enter 0 in  | boxes (46,                                                                                  |            | l otal = Su            | m(45) <sub>112</sub> = | =       | 1428.42 | (45) |
| (46)m=                             | 22.21       | 19.43        | 20.05              | 17.48        | 16.77       | 14.47                  | 13.41       | 15.39                                                                                       | 15.57      | 18.15                  | 19.81                  | 21.51   |         | (46) |
| · · ·                              | storage     |              | 20.00              | 17.40        | 10.77       | 14.47                  | 13.41       | 15.55                                                                                       | 15.57      | 10.15                  | 19.01                  | 21.51   |         | (40) |
|                                    | -           |              | ) includir         | ng any so    | olar or W   | /WHRS                  | storage     | within sa                                                                                   | ame ves    | sel                    |                        | 0       |         | (47) |
| If com                             | munity h    | eating a     | and no ta          | ink in dw    | velling, e  | nter 110               | ) litres in | (47)                                                                                        |            |                        |                        |         |         |      |
| Other                              | vise if no  | o stored     | hot wate           | er (this ir  | icludes i   | nstantar               | neous co    | mbi boil                                                                                    | ers) ente  | er '0' in (            | 47)                    |         |         |      |
| Water                              | storage     | loss:        |                    |              |             |                        |             |                                                                                             |            |                        |                        |         |         |      |
| a) If n                            | nanufact    | urer's de    | eclared I          | oss facto    | or is kno   | wn (kWł                | n/day):     |                                                                                             |            |                        |                        | 0       |         | (48) |
| Tempe                              | erature f   | actor fro    | m Table            | 2b           |             |                        |             |                                                                                             |            |                        |                        | 0       |         | (49) |
| -                                  |             |              | -                  | , kWh/ye     |             |                        |             | (48) x (49)                                                                                 | =          |                        |                        | 0       |         | (50) |
| ,                                  |             |              |                    | cylinder l   |             |                        |             |                                                                                             |            |                        |                        |         | -       |      |
|                                    |             | -            |                    | om Tabl      | e 2 (kW     | n/litre/da             | ay)         |                                                                                             |            |                        |                        | 0       |         | (51) |
|                                    |             | from Ta      | ee secti<br>ble 2a | 011 4.3      |             |                        |             |                                                                                             |            |                        |                        | 0       |         | (52) |
|                                    |             |              | m Table            | 2b           |             |                        |             |                                                                                             |            |                        |                        | 0<br>0  |         | (52) |
|                                    |             |              |                    |              |             |                        |             |                                                                                             |            |                        |                        | -       |         | ()   |

| •••        |            | om watei<br>(54) in (5 | <sup>-</sup> storage<br>55) | e, kWh/y₀  | ear        |             |                 | (47) x (51       | ) x (52) x (     | 53) =        |             | 0           |               | (54)<br>(55) |
|------------|------------|------------------------|-----------------------------|------------|------------|-------------|-----------------|------------------|------------------|--------------|-------------|-------------|---------------|--------------|
| Water      | storage    | loss cal               | culated                     | for each   | month      |             |                 | ((56)m = (       | (55) × (41)ı     | n            |             |             | I             |              |
| (56)m=     | 0          | 0                      | 0                           | 0          | 0          | 0           | 0               | 0                | 0                | 0            | 0           | 0           |               | (56)         |
| If cylinde | er contain | s dedicate             | d solar sto                 | rage, (57) | m = (56)m  | x [(50) – ( | H11)] ÷ (5      | 0), else (5      | 7)m = (56)       | m where (    | H11) is fro | m Append    | ix H          |              |
| (57)m=     | 0          | 0                      | 0                           | 0          | 0          | 0           | 0               | 0                | 0                | 0            | 0           | 0           |               | (57)         |
| Primar     | v circuit  | loss (ar               | nual) fro                   | om Table   | • 3        |             |                 |                  |                  |              |             | 0           |               | (58)         |
|            |            | •                      | ,                           |            |            | 59)m = (    | (58) ÷ 36       | 65 × (41)        | m                |              |             |             | I             |              |
| (mo        | dified by  | factor f               | rom Tab                     | le H5 if t | here is s  | solar wat   | ter heatir      | ng and a         | cylinde          | r thermo     | stat)       |             |               |              |
| (59)m=     | 0          | 0                      | 0                           | 0          | 0          | 0           | 0               | 0                | 0                | 0            | 0           | 0           |               | (59)         |
| Combi      | loss ca    | lculated               | for each                    | month      | (61)m =    | (60) ÷ 30   | 65 × (41)       | )m               |                  |              |             |             |               |              |
| (61)m=     | 14.11      | 12.72                  | 14.05                       | 13.56      | 13.99      | 13.5        | 13.93           | 13.97            | 13.53            | 14.03        | 13.62       | 14.1        |               | (61)         |
| Total h    | neat req   | uired for              | water h                     | eating ca  | alculated  | l for eac   | h month         | (62)m =          | 0.85 × (         | 45)m +       | (46)m +     | (57)m +     | (59)m + (61)m |              |
| (62)m=     | 162.21     | 142.25                 | 147.71                      | 130.09     | 125.8      | 109.99      | 103.34          | 116.56           | 117.36           | 135.02       | 145.69      | 157.52      |               | (62)         |
| Solar DI   | HW input   | calculated             | using App                   | endix G o  | r Appendix | H (negati   | ve quantity     | /) (enter '0     | ' if no sola     | r contributi | on to wate  | er heating) | '             |              |
| (add a     | dditiona   | l lines if             | FGHRS                       | and/or \   | NWHRS      | applies     | , see Ap        | pendix (         | G)               |              |             |             |               |              |
| (63)m=     | 0          | 0                      | 0                           | 0          | 0          | 0           | 0               | 0                | 0                | 0            | 0           | 0           |               | (63)         |
| Output     | t from w   | ater hea               | ter                         | -          |            | -           |                 | -                |                  |              |             |             |               |              |
| (64)m=     | 162.21     | 142.25                 | 147.71                      | 130.09     | 125.8      | 109.99      | 103.34          | 116.56           | 117.36           | 135.02       | 145.69      | 157.52      |               | _            |
|            |            |                        |                             |            |            |             |                 | Out              | out from wa      | ater heatei  | r (annual)₁ | 12          | 1593.54       | (64)         |
| Heat g     | ains fro   | m water                | heating,                    | , kWh/m    | onth 0.2   | 5 ´ [0.85   | × (45)m         | + (61)n          | n] + 0.8 x       | : [(46)m     | + (57)m     | + (59)m     | ]             |              |
| (65)m=     | 52.77      | 46.25                  | 47.96                       | 42.14      | 40.67      | 35.46       | 33.21           | 37.6             | 37.9             | 43.74        | 47.32       | 51.21       |               | (65)         |
| inclu      | ude (57)   | m in cale              | culation                    | of (65)m   | only if c  | ylinder i   | s in the c      | dwelling         | or hot w         | ater is fr   | om com      | munity h    | eating        |              |
| 5. Int     | ternal ga  | ains (see              | e Table 5                   | 5 and 5a   | ):         |             |                 |                  |                  |              |             |             |               |              |
| Metab      | olic gair  | is (Table              | e 5), Wat                   | ts         |            |             |                 |                  |                  |              |             |             |               |              |
|            | Jan        | Feb                    | Mar                         | Apr        | May        | Jun         | Jul             | Aug              | Sep              | Oct          | Nov         | Dec         |               |              |
| (66)m=     | 142.96     | 142.96                 | 142.96                      | 142.96     | 142.96     | 142.96      | 142.96          | 142.96           | 142.96           | 142.96       | 142.96      | 142.96      |               | (66)         |
| Lightin    | g gains    | (calcula               | ted in Ap                   | pendix     | L, equat   | ion L9 o    | r L9a), a       | lso see          | Table 5          |              |             |             | I             |              |
| (67)m=     | 52.87      | 46.96                  | 38.19                       | 28.91      | 21.61      | 18.25       | 19.72           | 25.63            | 34.4             | 43.68        | 50.98       | 54.34       |               | (67)         |
| Applia     | nces ga    | ins (calc              | ulated ir                   | n Appeno   | dix L, eq  | uation L    | 13 or L1        | 3a), also        | see Tal          | ole 5        |             | •           | I             |              |
| (68)m=     | 314.74     | 318.01                 | 309.78                      | 292.26     | 270.14     | 249.35      | 235.47          | 232.2            | 240.43           | 257.95       | 280.07      | 300.86      |               | (68)         |
| Cookir     | ng gains   | (calcula               | ted in A                    | ppendix    | L, equat   | ion L15     | or L15a)        | ), also se       | e Table          | 5            |             |             | I             |              |
| (69)m=     | 51.68      | 51.68                  | 51.68                       | 51.68      | 51.68      | 51.68       | 51.68           | 51.68            | 51.68            | 51.68        | 51.68       | 51.68       |               | (69)         |
| Pumps      | s and fa   | ns gains               | (Table                      | 5a)        |            |             |                 |                  |                  |              |             |             | I             |              |
| (70)m=     | 3          | 3                      | 3                           | 3          | 3          | 3           | 3               | 3                | 3                | 3            | 3           | 3           |               | (70)         |
| Losses     | s e.g. ev  | aporatic               | n (nega                     | tive valu  | es) (Tab   | le 5)       |                 |                  |                  |              |             |             | I             |              |
| (71)m=     | -95.3      | -95.3                  | -95.3                       | -95.3      | -95.3      | -95.3       | -95.3           | -95.3            | -95.3            | -95.3        | -95.3       | -95.3       |               | (71)         |
| Water      | heating    | ı<br>gains (1          | able 5)                     | !          | !          | I           |                 | I                | !                |              |             | !           | l             |              |
| (72)m=     | 70.93      | 68.82                  | 64.46                       | 58.52      | 54.67      | 49.25       | 44.64           | 50.54            | 52.64            | 58.79        | 65.72       | 68.84       |               | (72)         |
|            | internal   | gains =                |                             |            |            | (66)        | ı<br>)m + (67)m | ı<br>ı + (68)m ∙ | I<br>+ (69)m + ( | 70)m + (7    | 1)m + (72)  | )m          | I             |              |
| (73)m=     | 540.88     | 536.12                 | 514.76                      | 482.02     | 448.75     | 419.18      | 402.15          | 410.7            | 429.8            | 462.74       | 499.1       | 526.37      |               | (73)         |
|            | lar gains  |                        |                             |            | 1          |             | 1               |                  | 1                |              | L           | 1           |               |              |

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

| Orientation:              | Access Fao<br>Table 6d                  | ctor     | Area<br>m² |           |              | Flu<br>Tal | x<br>ble 6a |        | g_<br>Table 6t | D   | ٦     | FF<br>able 6c |      |     | Gains<br>(W) |      |
|---------------------------|-----------------------------------------|----------|------------|-----------|--------------|------------|-------------|--------|----------------|-----|-------|---------------|------|-----|--------------|------|
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            | 1          | 1.28        | x      | 0.76           |     | ×「    | 0.7           |      | =   | 14.77        | (75) |
| Northeast 0.9x            | 0.77                                    | ×        | 3.5        | 5         | x            | 2          | 2.97        | ×      | 0.76           |     | ×     | 0.7           | =    | =   | 30.06        | (75) |
| Northeast 0.9x            | 0.77                                    | ×        | 3.5        | 5         | x            | 4          | 1.38        | ×      | 0.76           |     | ×     | 0.7           |      | =   | 54.16        | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            | 6          | 7.96        | ×      | 0.76           |     | ×     | 0.7           |      | =   | 88.94        | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            | 9          | 1.35        | ×      | 0.76           |     | ×     | 0.7           |      | =   | 119.55       | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            | 9          | 7.38        | x      | 0.76           |     | ×     | 0.7           |      | =   | 127.46       | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            |            | 91.1        | x      | 0.76           |     | ×     | 0.7           |      | =   | 119.23       | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            | 7          | 2.63        | x      | 0.76           |     | ×     | 0.7           |      | =   | 95.05        | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            | 5          | 0.42        | ×      | 0.76           |     | ×     | 0.7           |      | =   | 65.99        | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            | 2          | 8.07        | ×      | 0.76           |     | ×     | 0.7           |      | =   | 36.73        | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            |            | 14.2        | x      | 0.76           |     | ×     | 0.7           |      | =   | 18.58        | (75) |
| Northeast 0.9x            | 0.77                                    | x        | 3.5        | 5         | x            | 9          | 9.21        | x      | 0.76           |     | ×     | 0.7           |      | =   | 12.06        | (75) |
| Southwest0.9x             | 0.77                                    | x        | 3.1        | 2         | x            | 3          | 6.79        | İ      | 0.76           |     | ×     | 0.7           |      | =   | 42.32        | (79) |
| Southwest0.9x             | 0.77                                    | x        | 3.1        | 2         | x            | 6          | 2.67        | İ      | 0.76           |     | ×     | 0.7           |      | =   | 72.09        | (79) |
| Southwest0.9x             | 0.77                                    | x        | 3.1        | 2         | x            | 8          | 5.75        | Ī      | 0.76           |     | ×     | 0.7           |      | =   | 98.64        | (79) |
| Southwest0.9x             | 0.77                                    | x        | 3.1        | 2         | x            | 10         | 06.25       | İ      | 0.76           |     | ×     | 0.7           |      | =   | 122.22       | (79) |
| Southwest0.9x             | 0.77                                    | x        | 3.1        | 2         | x            | 1          | 19.01       | İ      | 0.76           |     | ×     | 0.7           |      | =   | 136.89       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                                    | ×        | 3.1        | 2         | x            | 1          | 18.15       | i      | 0.76           |     | ×     | 0.7           |      | =   | 135.9        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                                    | ×        | 3.1        | 2         | x            | 1          | 13.91       | ĺ      | 0.76           |     | ×     | 0.7           | =    | =   | 131.03       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                                    | ×        | 3.1        | 2         | x            | 10         | 04.39       | ĺ      | 0.76           |     | ×「    | 0.7           | =    | =   | 120.08       | (79) |
| Southwest <sub>0.9x</sub> | 0.77                                    | ×        | 3.1        | 2         | x            | 9          | 2.85        | ĺ      | 0.76           |     | ×     | 0.7           |      | =   | 106.8        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                                    | x        | 3.1        | 2         | x            | 6          | 9.27        | ĺ      | 0.76           |     | ×     | 0.7           | =    | =   | 79.68        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                                    | ×        | 3.1        | 2         | x            | 4          | 4.07        | ĺ      | 0.76           |     | ×     | 0.7           |      | =   | 50.69        | (79) |
| Southwest <sub>0.9x</sub> | 0.77                                    | ×        | 3.1        | 2         | x            | 3          | 1.49        | ĺ      | 0.76           |     | ×     | 0.7           |      | =   | 36.22        | (79) |
|                           |                                         |          |            | •         |              |            |             | •      |                |     | -     |               |      | •   |              | _    |
| Solar <u>g</u> ains ir    | n watts, calc                           | ulated   | for eac    | n month   | 1            |            |             | (83)m  | n = Sum(74)m   | า(8 | 2)m   |               |      |     |              |      |
| (83)m= 57.09              |                                         | 152.8    | 211.16     | 256.45    |              | 63.36      | 250.26      | 215    | .13 172.8      | 11  | 16.41 | 69.27         | 48.2 | 28  |              | (83) |
| Total gains –             | - I - I - I - I - I - I - I - I - I - I |          | . ,        | . ,       | <del>`</del> | ,          |             |        |                |     |       |               |      |     | I            |      |
| (84)m= 597.97             | 7 638.27 6                              | 667.55   | 693.18     | 705.2     | 6            | 82.54      | 652.41      | 625    | .83 602.6      | 57  | 79.15 | 568.37        | 574. | .64 |              | (84) |
| 7. Mean inte              | ernal tempe                             | rature   | (heating   | seasor    | า)           |            |             |        |                |     |       |               |      |     |              |      |
| Temperatur                | e during hea                            | ating p  | eriods ir  | the liv   | ing          | area f     | from Tab    | ole 9  | , Th1 (°C)     |     |       |               |      |     | 21           | (85) |
| Utilisation fa            | actor for gain                          | ns for I | iving are  | ea, h1,n  | n (s         | ее Та      | ble 9a)     |        |                |     |       |               |      |     |              |      |
| Jan                       | Feb                                     | Mar      | Apr        | May       |              | Jun        | Jul         | A      | ug Sep         |     | Oct   | Nov           | D    | ес  |              |      |
| (86)m= 0.96               | 0.95                                    | 0.92     | 0.87       | 0.77      | (            | 0.61       | 0.46        | 0.     | 5 0.7          | C   | ).88  | 0.94          | 0.9  | 7   |              | (86) |
| Mean intern               | al temperat                             | ure in l | living are | ea T1 (f  | ollo         | w ste      | ps 3 to 7   | 7 in T | able 9c)       |     |       |               |      |     |              |      |
| (87)m= 19.71              | 19.86                                   | 20.12    | 20.47      | 20.75     | 2            | 20.93      | 20.98       | 20.    | 97 20.87       | 2   | 0.52  | 20.07         | 19.6 | 68  |              | (87) |
| Temperatur                | e during hea                            | ating p  | eriods ir  | n rest of | dw           | elling     | from Ta     | able 9 | 9, Th2 (°C)    |     |       |               |      |     |              |      |
| (88)m= 20.11              | <u> </u>                                | 20.12    | 20.13      | 20.13     | -            | 20.14      | 20.14       | 20.    | ,              | -1  | 0.13  | 20.13         | 20.1 | 12  |              | (88) |
| Utilisation fa            | actor for dai                           | ns for r | est of d   | velling   | h2           | m (se      | e Table     | 9a)    | Į              | _!  |       | •             |      |     | I            |      |
| (89)m= 0.96               | <u> </u>                                | 0.91     | 0.85       | 0.73      | -            | 0.54       | 0.38        | 0.4    | 1 0.64         |     | ).85  | 0.93          | 0.9  | 6   |              | (89) |
|                           |                                         |          | -          | -         |              |            | -           |        |                |     |       | _             | I    |     | l            |      |

| Mean                                                                                                       | interna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l temper                                                                                                                                            | ature in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the rest                                                                                                                                | of dwelli                                                                                                             | ng 12 (f                        | UNOW SIE                | eps 3 to                                                   | n n Tabi                                                               | e 90)                                                      |                                                                            |                           |                                    |                                                                   |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------|------------------------------------|-------------------------------------------------------------------|
| (90)m=                                                                                                     | 18.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.09                                                                                                                                               | 19.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.69                                                                                                                                   | 19.95                                                                                                                 | 20.1                            | 20.13                   | 20.13                                                      | 20.05                                                                  | 19.75                                                      | 19.31                                                                      | 18.92                     |                                    | (90)                                                              |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                       |                                 |                         |                                                            | f                                                                      | LA = Livin                                                 | g area ÷ (4                                                                | 4) =                      | 0.26                               | (91)                                                              |
|                                                                                                            | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                       |                                 | · • • • •               | . (4 (1                                                    |                                                                        |                                                            |                                                                            | I                         |                                    |                                                                   |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                                                                                                                 | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or the wh                                                                                                                               |                                                                                                                       | <del></del>                     | í –                     | <del>_`</del>                                              |                                                                        | 10.05                                                      | 40.54                                                                      |                           |                                    | (02)                                                              |
| (92)m=                                                                                                     | 19.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.3                                                                                                                                                | 19.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19.89                                                                                                                                   | 20.16                                                                                                                 | 20.32                           | 20.36                   | 20.35                                                      | 20.27                                                                  | 19.95                                                      | 19.51                                                                      | 19.12                     |                                    | (92)                                                              |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n internal                                                                                                                              | · · ·                                                                                                                 | 1                               | 1                       | 1                                                          |                                                                        | -                                                          |                                                                            |                           |                                    | (00)                                                              |
| (93)m=                                                                                                     | 18.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.15                                                                                                                                               | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.74                                                                                                                                   | 20.01                                                                                                                 | 20.17                           | 20.21                   | 20.2                                                       | 20.12                                                                  | 19.8                                                       | 19.36                                                                      | 18.97                     |                                    | (93)                                                              |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     | uirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                         |                                                                                                                       |                                 |                         |                                                            |                                                                        |                                                            |                                                                            |                           |                                    |                                                                   |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mperatui                                                                                                                                |                                                                                                                       | ned at st                       | ep 11 of                | Table 9                                                    | o, so tha                                                              | t Ti,m=(                                                   | 76)m an                                                                    | d re-calc                 | ulate                              |                                                                   |
| the ut                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | using Ta                                                                                                                                |                                                                                                                       |                                 |                         |                                                            | 0                                                                      | 0.1                                                        |                                                                            |                           |                                    |                                                                   |
|                                                                                                            | Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Feb                                                                                                                                                 | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Apr                                                                                                                                     | May                                                                                                                   | Jun                             | Jul                     | Aug                                                        | Sep                                                                    | Oct                                                        | Nov                                                                        | Dec                       |                                    |                                                                   |
|                                                                                                            | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93                                                                                                                                                | ains, hm<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.83                                                                                                                                    | 0.72                                                                                                                  | 0.54                            | 0.38                    | 0.40                                                       | 0.64                                                                   | 0.84                                                       | 0.92                                                                       | 0.95                      |                                    | (94)                                                              |
| (94)m=                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                       | 0.54                            | 0.38                    | 0.42                                                       | 0.64                                                                   | 0.84                                                       | 0.92                                                                       | 0.95                      |                                    | (94)                                                              |
| 1                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     | r È                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4)m x (84                                                                                                                               | ·                                                                                                                     | 074.04                          | 050.40                  | 004.07                                                     | 005.5                                                                  | 405.04                                                     | 504.4                                                                      | E 47.07                   |                                    | (05)                                                              |
| (95)m=                                                                                                     | 565.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 593.65                                                                                                                                              | 599.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 577.5                                                                                                                                   | 506.64                                                                                                                | 371.31                          | 250.48                  | 261.97                                                     | 385.5                                                                  | 485.31                                                     | 524.1                                                                      | 547.07                    |                                    | (95)                                                              |
| 1                                                                                                          | r –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                            | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nperature                                                                                                                               | r                                                                                                                     | r                               |                         |                                                            |                                                                        |                                                            |                                                                            |                           |                                    | (00)                                                              |
| (96)m=                                                                                                     | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9                                                                                                                                                 | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.9                                                                                                                                     | 11.7                                                                                                                  | 14.6                            | 16.6                    | 16.4                                                       | 14.1                                                                   | 10.6                                                       | 7.1                                                                        | 4.2                       |                                    | (96)                                                              |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nal tempe                                                                                                                               | i                                                                                                                     | 1                               | 1 /                     | <u>, ,</u>                                                 | · ,                                                                    | -                                                          | r                                                                          |                           |                                    |                                                                   |
| (97)m=                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1042.28                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 778.83                                                                                                                                  | 595.05                                                                                                                | 393.4                           | 254.89                  | 268.16                                                     | 427.46                                                                 | 659.25                                                     | 883.33                                                                     | 1070.49                   |                                    | (97)                                                              |
| · ·                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | or each n                                                                                                                               | 1                                                                                                                     | Wh/mon <sup>-</sup>             | th = 0.02               | 24 x [(97                                                  | )m – (95                                                               |                                                            | · · · · · · · · · · · · · · · · · · ·                                      |                           |                                    |                                                                   |
| (98)m=                                                                                                     | 381.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 301.48                                                                                                                                              | 253.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 144.96                                                                                                                                  | 65.78                                                                                                                 | 0                               | 0                       | 0                                                          | 0                                                                      | 129.41                                                     | 258.65                                                                     | 389.42                    |                                    | _                                                                 |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                       |                                 |                         | Tota                                                       | l per year                                                             | (kWh/year                                                  | ) = Sum(9                                                                  | 8)15,912 =                | 1924.78                            | (98)                                                              |
| Space                                                                                                      | e heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g require                                                                                                                                           | ement in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ₁ kWh/m²                                                                                                                                | ²/vear                                                                                                                |                                 |                         |                                                            |                                                                        |                                                            |                                                                            |                           | 05.00                              | (99)                                                              |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                               |                                 |                         |                                                            |                                                                        |                                                            |                                                                            |                           | 25.33                              | (33)                                                              |
| 0a En                                                                                                      | orav roc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uiromor                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         | •                                                                                                                     | vetome i                        | ncluding                | micro-C                                                    | יחט                                                                    |                                                            |                                                                            | l                         | 25.33                              | (33)                                                              |
|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ividual h                                                                                                                               | •                                                                                                                     | ystems i                        | ncluding                | micro-C                                                    | CHP)                                                                   |                                                            |                                                                            |                           | 25.33                              |                                                                   |
| Space                                                                                                      | e heatir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ng:                                                                                                                                                 | nts – Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ividual h                                                                                                                               | eating s                                                                                                              |                                 |                         | micro-C                                                    | HP)                                                                    |                                                            |                                                                            | ]                         |                                    |                                                                   |
| <b>Spac</b><br>Fracti                                                                                      | <b>e heatir</b><br>on of sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>ng:</b><br>bace hea                                                                                                                              | nts – Ind<br>at from s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ividual h<br>econdar                                                                                                                    | eating s<br>y/supple                                                                                                  |                                 | system                  |                                                            |                                                                        |                                                            |                                                                            |                           | 0                                  | (201)                                                             |
| <b>Spac</b><br>Fracti<br>Fracti                                                                            | <b>e heatir</b><br>on of sp<br>on of sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>ng:</b><br>bace hea<br>bace hea                                                                                                                  | nts – Ind<br>at from s<br>at from n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ividual h<br>econdar<br>nain syst                                                                                                       | eating s<br>y/supple<br>em(s)                                                                                         |                                 | y system                | (202) = 1 ·                                                | - (201) =                                                              | (000)]                                                     |                                                                            |                           | 01                                 | (201)<br>(202)                                                    |
| <b>Spac</b><br>Fracti<br>Fracti                                                                            | <b>e heatir</b><br>on of sp<br>on of sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>ng:</b><br>bace hea<br>bace hea                                                                                                                  | nts – Ind<br>at from s<br>at from n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ividual h<br>econdar                                                                                                                    | eating s<br>y/supple<br>em(s)                                                                                         |                                 | y system                | (202) = 1 ·                                                |                                                                        | (203)] =                                                   |                                                                            |                           | 0                                  | (201)                                                             |
| <b>Spac</b><br>Fracti<br>Fracti<br>Fracti                                                                  | e heatin<br>on of sp<br>on of sp<br>on of to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>ng:</b><br>bace hea<br>bace hea<br>tal heati                                                                                                     | nts – Ind<br>at from s<br>at from n<br>ng from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ividual h<br>econdar<br>nain syst                                                                                                       | eating s<br>y/supple<br>em(s)<br>stem 1                                                                               |                                 | y system                | (202) = 1 ·                                                | - (201) =                                                              | (203)] =                                                   |                                                                            |                           | 01                                 | (201)<br>(202)                                                    |
| <b>Spac</b><br>Fracti<br>Fracti<br>Fracti<br>Efficie                                                       | e heatir<br>on of sp<br>on of sp<br>on of to<br>ency of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>ng:</b><br>bace hea<br>bace hea<br>tal heati<br>main spa                                                                                         | nts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ividual h<br>econdar<br>nain syst<br>main sys                                                                                           | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1                                                                       | mentary                         | r system                | (202) = 1 ·                                                | - (201) =                                                              | (203)] =                                                   |                                                                            |                           | 0<br>1<br>1                        | (201)<br>(202)<br>(204)                                           |
| <b>Spac</b><br>Fracti<br>Fracti<br>Fracti<br>Efficie                                                       | e heatin<br>on of sp<br>on of to<br>on of to<br>ency of r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda                                                                                     | nts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ividual h<br>econdary<br>nain syst<br>main sys<br>ing syste<br>ementar                                                                  | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating                                                          | mentary<br>g systen             | r system                | (202) = 1 ·<br>(204) = (2                                  | - (201) =<br>02) × [1 -                                                |                                                            | Nov                                                                        | Dec                       | 0<br>1<br>1<br>90.5<br>0           | (201)<br>(202)<br>(204)<br>(206)<br>(208)                         |
| Space<br>Fracti<br>Fracti<br>Fracti<br>Efficie<br>Efficie                                                  | e heatir<br>on of sp<br>on of to<br>ency of r<br>ency of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb                                                                              | nts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ividual h<br>econdary<br>nain syst<br>main syste<br>ing syste<br>ementar<br>Apr                                                         | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>May                                                   | mentary<br>g systen<br>Jun      | r system                | (202) = 1 ·                                                | - (201) =                                                              | (203)] =<br>Oct                                            | Nov                                                                        | Dec                       | 0<br>1<br>1<br>90.5                | (201)<br>(202)<br>(204)<br>(206)<br>(208)                         |
| Space<br>Fracti<br>Fracti<br>Fracti<br>Efficie<br>Efficie                                                  | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>e heatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require                                                                 | nts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>ement (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ividual h<br>econdary<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>calculate                                             | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>May<br>d above                                        | mentary<br>g systen<br>Jun      | r system<br>n, %<br>Jul | (202) = 1 ·<br>(204) = (2                                  | - (201) =<br>02) × [1 -                                                |                                                            |                                                                            |                           | 0<br>1<br>1<br>90.5<br>0           | (201)<br>(202)<br>(204)<br>(206)<br>(208)                         |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Efficie<br>Space                                                   | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>e heatin<br>381.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng:<br>pace hea<br>pace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48                                                       | nts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>ement (c<br>253.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ividual h<br>econdary<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>calculate<br>144.96                                   | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>May<br>d above<br>65.78                               | mentary<br>g systen<br>Jun      | r system                | (202) = 1 ·<br>(204) = (2<br>Aug                           | - (201) =<br>02) × [1 - 1<br>Sep                                       | Oct                                                        | Nov<br>258.65                                                              | Dec<br>389.42             | 0<br>1<br>1<br>90.5<br>0           | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar                   |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Efficie<br>Space                                                   | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>381.32<br>$n = \{[(98)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48<br>)m x (20                                           | nts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>ement (c<br>253.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ividual h<br>econdar<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>calculate<br>144.96                                    | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>May<br>d above<br>65.78                               | mentary<br>g systen<br>Jun<br>0 | y system                | (202) = 1 ·<br>(204) = (2<br>Aug                           | - (201) =<br>02) × [1 - +<br>Sep<br>0                                  | Oct<br>129.41                                              | 258.65                                                                     | 389.42                    | 0<br>1<br>1<br>90.5<br>0           | (201)<br>(202)<br>(204)<br>(206)<br>(208)                         |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Efficie<br>Space                                                   | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>e heatin<br>381.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ng:<br>pace hea<br>pace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48                                                       | nts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>ement (c<br>253.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ividual h<br>econdary<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>calculate<br>144.96                                   | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>May<br>d above<br>65.78                               | mentary<br>g systen<br>Jun      | r system<br>n, %<br>Jul | $(202) = 1 \cdot (204) = (2)$<br>Aug                       | - (201) =<br>02) × [1 - 1<br>Sep<br>0                                  | Oct<br>129.41<br>142.99                                    | 258.65<br>285.8                                                            | 389.42<br>430.3           | 0<br>1<br>1<br>90.5<br>0<br>kWh/ye | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar                   |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Space<br>(211)m                                                    | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>e heatin<br>381.32<br>n = {[(98<br>421.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48<br>)m x (20<br>333.13                                 | nts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>ement (c<br>253.75<br>(4)] } x 1<br>280.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ividual h<br>econdary<br>nain syst<br>main syste<br>ementar<br>Apr<br>2alculated<br>144.96<br>100 ÷ (20<br>160.18                       | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>d above<br>65.78<br>06)<br>72.69                      | mentary<br>g systen<br>Jun<br>0 | y system                | $(202) = 1 \cdot (204) = (2)$<br>Aug                       | - (201) =<br>02) × [1 - +<br>Sep<br>0                                  | Oct<br>129.41<br>142.99                                    | 258.65<br>285.8                                                            | 389.42<br>430.3           | 0<br>1<br>1<br>90.5<br>0           | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar                   |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Space<br>(211)m                                                    | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>381.32<br>$n = \{[(98)$<br>421.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48<br>)m x (20<br>333.13<br>g fuel (s                    | nts – Ind<br>at from s<br>at from m<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>253.75<br>(4)] } x 1<br>280.38<br>econdar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ividual h<br>econdary<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>calculate<br>144.96<br>100 ÷ (20<br>160.18            | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>d above<br>65.78<br>06)<br>72.69                      | mentary<br>g systen<br>Jun<br>0 | y system                | $(202) = 1 \cdot (204) = (2)$<br>Aug                       | - (201) =<br>02) × [1 - 1<br>Sep<br>0                                  | Oct<br>129.41<br>142.99                                    | 258.65<br>285.8                                                            | 389.42<br>430.3           | 0<br>1<br>1<br>90.5<br>0<br>kWh/ye | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar                   |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Efficie<br>Space<br>(211)m<br>Space<br>= {[(98)                    | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>a heatin<br>381.32<br>$n = \{[(98)$<br>421.35<br>e heatin<br>)m x (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48<br>)m x (20<br>333.13<br>g fuel (s<br>01)] } x 1      | hts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>253.75<br>(4)] $\}$ x 1<br>280.38<br>econdar<br>00 ÷ (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ividual h<br>econdary<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>alculated<br>144.96<br>100 ÷ (20<br>160.18            | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>d above<br>65.78<br>06)<br>72.69                      | g systen                        | y system                | $(202) = 1 \cdot (204) = (2)$<br>Aug<br>0<br>Tota          | - (201) =<br>02) × [1 - 1<br>Sep<br>0<br>1 (kWh/yea                    | Oct<br>129.41<br>142.99<br>ar) =Sum(2                      | 258.65<br>285.8<br>211) <sub>15,1012</sub>                                 | 389.42<br>430.3           | 0<br>1<br>1<br>90.5<br>0<br>kWh/ye | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar                   |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Space<br>(211)m                                                    | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>a heatin<br>381.32<br>$n = \{[(98)$<br>421.35<br>e heatin<br>)m x (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48<br>)m x (20<br>333.13<br>g fuel (s                    | nts – Ind<br>at from s<br>at from m<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>253.75<br>(4)] } x 1<br>280.38<br>econdar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ividual h<br>econdary<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>calculate<br>144.96<br>100 ÷ (20<br>160.18            | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>d above<br>65.78<br>06)<br>72.69                      | mentary<br>g systen<br>Jun<br>0 | y system                | $(202) = 1 \cdot (204) = (2)$<br>Aug<br>0<br>Tota          | - (201) =<br>02) × [1 - 1<br>Sep<br>0<br>1 (kWh/yea                    | Oct<br>129.41<br>142.99<br>ar) =Sum(2<br>0                 | 258.65<br>285.8<br>211) <sub>15,1012</sub><br>0                            | 389.42<br>430.3<br>=<br>0 | 0<br>1<br>1<br>90.5<br>0<br>kWh/ye | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar<br>(211)<br>(211) |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Efficie<br>Space<br>(211)m<br>Space<br>= {[(98)                    | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>a heatin<br>381.32<br>$n = \{[(98)$<br>421.35<br>e heatin<br>)m x (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48<br>)m x (20<br>333.13<br>g fuel (s<br>01)] } x 1      | hts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>253.75<br>(4)] $\}$ x 1<br>280.38<br>econdar<br>00 ÷ (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ividual h<br>econdary<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>alculated<br>144.96<br>100 ÷ (20<br>160.18            | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>d above<br>65.78<br>06)<br>72.69                      | g systen                        | y system                | $(202) = 1 \cdot (204) = (2)$<br>Aug<br>0<br>Tota          | - (201) =<br>02) × [1 - 1<br>Sep<br>0<br>1 (kWh/yea                    | Oct<br>129.41<br>142.99<br>ar) =Sum(2<br>0                 | 258.65<br>285.8<br>211) <sub>15,1012</sub><br>0                            | 389.42<br>430.3<br>=<br>0 | 0<br>1<br>1<br>90.5<br>0<br>kWh/ye | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar                   |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Space<br>(211)m<br>Space<br>= {[(98)<br>(215)m=                    | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>a heatin<br>381.32<br>$n = \{[(98)$<br>421.35<br>e heatin<br>)m x (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48<br>)m x (20<br>333.13<br>g fuel (s<br>0)] } x 1<br>0  | hts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>253.75<br>(4)] $\}$ x 1<br>280.38<br>econdar<br>00 ÷ (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ividual h<br>econdary<br>nain syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>alculated<br>144.96<br>100 ÷ (20<br>160.18            | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>d above<br>65.78<br>06)<br>72.69                      | g systen                        | y system                | $(202) = 1 \cdot (204) = (2)$<br>Aug<br>0<br>Tota          | - (201) =<br>02) × [1 - 1<br>Sep<br>0<br>1 (kWh/yea                    | Oct<br>129.41<br>142.99<br>ar) =Sum(2<br>0                 | 258.65<br>285.8<br>211) <sub>15,1012</sub><br>0                            | 389.42<br>430.3<br>=<br>0 | 0<br>1<br>1<br>90.5<br>0<br>kWh/ye | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar<br>(211)<br>(211) |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Space<br>(211)m<br>Space<br>= {[(98)<br>(215)m=                    | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>381.32<br>$n = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>421.35<br>$a = \{[(98)$<br>$a  [(98)<br>a = [(98) | ng:bace heatbace heatbace heattal heatimain spatesecondaFebg required301.48)m x (20)333.13g fuel (solution)g fuel (solution)0g ater heat            | hts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>253.75<br>(4)] } x 1<br>280.38<br>econdar<br>$00 \div (20)$<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ividual h<br>econdary<br>main syst<br>main syst<br>ementar<br>Apr<br>alculated<br>144.96<br>100 ÷ (20<br>160.18<br>y), kWh/<br>08)<br>0 | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>d above<br>65.78<br>06)<br>72.69<br>month<br>0        | mentary g system Jun 0 0        | v system                | (202) = 1 ·<br>(204) = (2<br>Aug<br>0<br>Tota<br>0<br>Tota | - (201) =<br>02) × [1 - +<br>Sep<br>0<br>1 (kWh/yea<br>0<br>1 (kWh/yea | Oct<br>129.41<br>142.99<br>ar) = Sum(2<br>0<br>ar) = Sum(2 | 258.65<br>285.8<br>211) <sub>15,1012</sub><br>0<br>215) <sub>15,1012</sub> | 389.42<br>430.3<br>=<br>0 | 0<br>1<br>1<br>90.5<br>0<br>kWh/ye | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar<br>(211)<br>(211) |
| Space<br>Fracti<br>Fracti<br>Efficie<br>Space<br>(211)m<br>Space<br>= {[(98)<br>(215)m=<br>Water<br>Output | e heatin<br>on of sp<br>on of to<br>ency of r<br>ency of s<br>Jan<br>e heatin<br>381.32<br>$n = \{[(98)$<br>421.35<br>e heatin<br>m x (20)<br>n = keatin $m x (20)n = keatinm x (20)n = keatinm x (20)n = keatin b = keatinm x (20)n = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = keatin b = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng:<br>bace hea<br>bace hea<br>tal heati<br>main spa<br>seconda<br>Feb<br>g require<br>301.48<br>)m x (20<br>333.13<br>g fuel (s<br>01)] } x 1<br>0 | hts – Ind<br>at from s<br>at from n<br>ng from<br>ace heat<br>ry/suppl<br>Mar<br>253.75<br>(253.75<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.75)<br>(253.7 | ividual h<br>econdary<br>main syst<br>main syst<br>ing syste<br>ementar<br>Apr<br>alculated<br>144.96<br>100 ÷ (20<br>160.18            | eating s<br>y/supple<br>em(s)<br>stem 1<br>em 1<br>y heating<br>May<br>d above<br>65.78<br>06)<br>72.69<br>month<br>0 | g systen                        | y system                | $(202) = 1 \cdot (204) = (2)$<br>Aug<br>0<br>Tota          | - (201) =<br>02) × [1 - 1<br>Sep<br>0<br>1 (kWh/yea                    | Oct<br>129.41<br>142.99<br>ar) =Sum(2<br>0                 | 258.65<br>285.8<br>211) <sub>15,1012</sub><br>0                            | 389.42<br>430.3<br>=<br>0 | 0<br>1<br>1<br>90.5<br>0<br>kWh/ye | (201)<br>(202)<br>(204)<br>(206)<br>(208)<br>ar<br>(211)<br>(211) |

| (217)m= 89.52 89.45 89.3 88.96                                                    | 88.37      | 87.3             | 87.3                   | 87.3      | 87.3       | 88.84                   | 89.32                   | 89.55                | ]                              | (217)      |
|-----------------------------------------------------------------------------------|------------|------------------|------------------------|-----------|------------|-------------------------|-------------------------|----------------------|--------------------------------|------------|
| Fuel for water heating, kWh/month                                                 | I          |                  | I                      |           |            | I                       | 1                       | <u> </u>             | 1                              |            |
| $(219)m = (64)m \times 100 \div (217)m$<br>(219)m = 181.2  159.03  165.42  146.24 | 142.35     | 125.99           | 118.37                 | 133.52    | 134.43     | 151.98                  | 163.11                  | 175.9                | 1                              |            |
|                                                                                   |            |                  |                        |           | l = Sum(2  |                         |                         |                      | 1797.53                        | (219)      |
| Annual totals                                                                     |            |                  |                        |           |            | k                       | Wh/yea                  | r                    | kWh/year                       | _          |
| Space heating fuel used, main system                                              | 1          |                  |                        |           |            |                         |                         |                      | 2126.82                        |            |
| Water heating fuel used                                                           |            |                  |                        |           |            |                         |                         |                      | 1797.53                        |            |
| Electricity for pumps, fans and electric l                                        | keep-hot   |                  |                        |           |            |                         |                         |                      |                                |            |
| central heating pump:                                                             |            |                  |                        |           |            |                         |                         | 30                   | ]                              | (230c)     |
| boiler with a fan-assisted flue                                                   |            |                  |                        |           |            |                         |                         | 45                   | ]                              | (230e)     |
| Total electricity for the above, kWh/yea                                          | r          |                  |                        | sum       | of (230a). | (230g) =                | :                       |                      | 75                             | (231)      |
| Electricity for lighting                                                          |            |                  |                        |           |            |                         |                         |                      | 373.51                         | (232)      |
| Total delivered energy for all uses (211                                          | )(221)     | + (231)          | + (232).               | (237b)    | =          |                         |                         |                      | 4460.17                        | (338)      |
| 10a. Fuel costs - individual heating sys                                          | stems:     |                  |                        |           |            |                         |                         |                      |                                | -          |
|                                                                                   |            | <b>Fu</b><br>kW  | <b>el</b><br>/h/year   |           |            | <b>Fuel P</b><br>(Table |                         |                      | <b>Fuel Cost</b><br>£/year     |            |
| Space heating - main system 1                                                     |            | (211             | 1) x                   |           |            | 3.4                     | 18                      | x 0.01 =             | 74.01                          | (240)      |
| Space heating - main system 2                                                     |            | (213             | 3) x                   |           |            | 0                       | )                       | x 0.01 =             | 0                              | ]<br>(241) |
| Space heating - secondary                                                         |            | (215             | 5) x                   |           |            | 13.                     | 19                      | x 0.01 =             | 0                              | (242)      |
| Water heating cost (other fuel)                                                   |            | (219             | 9)                     |           |            | 3.4                     | 18                      | x 0.01 =             | 62.55                          | (247)      |
| Pumps, fans and electric keep-hot                                                 |            | (231             | 1)                     |           |            | 13.                     | 19                      | x 0.01 =             | 9.89                           | ]<br>(249) |
| (if off-peak tariff, list each of (230a) to (2) Energy for lighting               | 230g) se   | parately<br>(232 |                        | licable a | nd apply   | fuel pri                |                         | rding to<br>x 0.01 = | Table 12a<br>49.27             | (250)      |
| Additional standing charges (Table 12)                                            |            |                  |                        |           |            |                         |                         |                      | 120                            | (251)      |
| Appendix Q items: repeat lines (253) ar                                           | nd (254)   | as noor          | hat                    |           |            |                         |                         |                      |                                | -          |
| Total energy cost                                                                 | . ,        |                  | 50)(254)               | =         |            |                         |                         |                      | 315.73                         | (255)      |
| 11a. SAP rating - individual heating sy                                           | stems      |                  |                        |           |            |                         |                         |                      |                                | -          |
| Energy cost deflator (Table 12)                                                   |            |                  |                        |           |            |                         |                         |                      | 0.42                           | (256)      |
| Energy cost factor (ECF)                                                          | [(255) x ( | (256)] ÷ [(      | 4) + 45.0]             | =         |            |                         |                         |                      | 1.1                            | (257)      |
| SAP rating (Section 12)                                                           |            |                  |                        |           |            |                         |                         |                      | 84.71                          | (258)      |
| 12a. CO2 emissions – Individual heati                                             | ng syste   | ms inclu         | uding mi               | cro-CHF   | )          |                         |                         |                      |                                |            |
|                                                                                   |            |                  | <b>ergy</b><br>/h/year |           |            | <b>Emiss</b><br>kg CO   | <b>ion fac</b><br>2/kWh | tor                  | <b>Emissions</b><br>kg CO2/yea | ır         |
| Space heating (main system 1)                                                     |            | (211             | 1) x                   |           |            | 0.2                     | 16                      | =                    | 459.39                         | (261)      |
| Space heating (secondary)                                                         |            | (215             | 5) x                   |           |            | 0.5                     | 19                      | =                    | 0                              | (263)      |
| Water heating                                                                     |            | (219             | 9) x                   |           |            | 0.2                     | 16                      | =                    | 388.27                         | (264)      |

| Space and water heating                                                                                                               | (261) + (262) + (263) + (2                                  | 264) =                   |   | 847.66                            | (265)                            |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|---|-----------------------------------|----------------------------------|
| Electricity for pumps, fans and electric keep-hot                                                                                     | (231) x                                                     | 0.519                    | = | 38.93                             | (267)                            |
| Electricity for lighting                                                                                                              | (232) x                                                     | 0.519                    | = | 193.85                            | (268)                            |
| Total CO2, kg/year                                                                                                                    |                                                             | sum of (265)(271) =      |   | 1080.44                           | (272)                            |
| CO2 emissions per m <sup>2</sup>                                                                                                      |                                                             | (272) ÷ (4) =            |   | 14.22                             | (273)                            |
| EI rating (section 14)                                                                                                                |                                                             |                          |   | 88                                | (274)                            |
| 13a. Primary Energy                                                                                                                   |                                                             |                          |   |                                   |                                  |
|                                                                                                                                       | <b>Energy</b><br>kWh/year                                   | <b>Primary</b><br>factor |   | <b>P. Energy</b><br>kWh/year      |                                  |
|                                                                                                                                       |                                                             |                          |   |                                   |                                  |
| Space heating (main system 1)                                                                                                         | (211) x                                                     | 1.22                     | = | 2594.73                           | (261)                            |
| Space heating (main system 1)<br>Space heating (secondary)                                                                            | (211) x<br>(215) x                                          | 1.22           3.07      | = | 2594.73<br>0                      | (261)<br>(263)                   |
|                                                                                                                                       |                                                             |                          |   |                                   | -                                |
| Space heating (secondary)                                                                                                             | (215) x                                                     | 3.07                     | = | 0                                 | (263)                            |
| Space heating (secondary)<br>Energy for water heating                                                                                 | (215) x<br>(219) x                                          | 3.07                     | = | 0 2192.99                         | (263)<br>(264)                   |
| Space heating (secondary)<br>Energy for water heating<br>Space and water heating                                                      | (215) x<br>(219) x<br>(261) + (262) + (263) + (2            | 3.07<br>1.22<br>264) =   | = | 0<br>2192.99<br>4787.72           | (263)<br>(264)<br>(265)          |
| Space heating (secondary)<br>Energy for water heating<br>Space and water heating<br>Electricity for pumps, fans and electric keep-hot | (215) x<br>(219) x<br>(261) + (262) + (263) + (2<br>(231) x | 3.07<br>1.22<br>264) =   | = | 0<br>2192.99<br>4787.72<br>230.25 | (263)<br>(264)<br>(265)<br>(267) |

## **SAP 2012 Overheating Assessment**

Calculated by Stroma FSAP 2012 program, produced and printed on 10 March 2021

#### Property Details: 114 Tavy [Mid] DCC4

| Dwelling type:<br>Located in:<br>Region:<br>Cross ventilation pos<br>Number of storeys:<br>Front of dwelling face<br>Overshading:<br>Overhangs:<br>Thermal mass param<br>Night ventilation:<br>Blinds, curtains, shut<br>Ventilation rate durin<br>Overheating Details: | es:<br>eter:<br>tters:                             | ather (a                    | ch):                               | Englan<br>South<br>Yes<br>2<br>North<br>Averag<br>None<br>Calcula<br>False<br>None | 2<br>North East<br>Average or unknown<br>None<br>Calculated 140.68<br><sup>F</sup> alse         |                                                                                            |                                                                       |                                  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------|------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------|--|--|--|--|
| Summer ventilation h<br>Transmission heat lo<br>Summer heat loss co<br>Overhangs:                                                                                                                                                                                       | ss coeffi                                          | cient:                      | ent:                               | 493.57<br>36.4<br>530.01                                                           |                                                                                                 |                                                                                            |                                                                       | (P1)<br>(P2)                     |  |  |  |  |
| Orientation:<br>North East (Front)<br>South West (Rear)<br>Solar shading:                                                                                                                                                                                               | <b>Ratio:</b><br>0<br>0                            |                             | <b>Z_overhangs:</b><br>1<br>1      |                                                                                    |                                                                                                 |                                                                                            |                                                                       |                                  |  |  |  |  |
| Orientation:<br>North East (Front)<br>South West (Rear)<br>Solar gains:                                                                                                                                                                                                 | <b>Z blind</b><br>1<br>1                           | s:                          | <b>Solar access:</b><br>0.9<br>0.9 | <b>C</b><br>1<br>1                                                                 |                                                                                                 | <b>Z summer:</b><br>0.9<br>0.9                                                             |                                                                       | (P8)<br>(P8)                     |  |  |  |  |
| Orientation<br>North East (Front)<br>South West (Rear)                                                                                                                                                                                                                  | 0.9 x<br>0.9 x                                     | <b>Area</b><br>3.55<br>3.12 | <b>Flux</b><br>105.45<br>126.97    | <b>g_</b><br>0.76<br>0.76                                                          | <b>FF</b><br>0.7<br>0.7                                                                         | Shading<br>0.9<br>0.9<br>Total                                                             | <b>Gains</b><br>161.32<br>170.71<br>332.03                            | (P3/P4)                          |  |  |  |  |
| Internal gains<br>Total summer gains<br>Summer gain/loss ratio<br>Mean summer externa<br>Thermal mass tempera<br>Threshold temperature<br>Likelihood of high internation<br>Assessment of likelih                                                                       | l tempera<br>ature incre<br>e<br><b>ternal ten</b> | ement<br>nperatu            | re                                 |                                                                                    | June<br>416.18<br>769.76<br>1.45<br>15.4<br>1.02<br>17.87<br>Not significant<br>Not significant | <b>July</b><br>399.15<br>731.18<br>1.38<br>17.4<br>1.02<br>19.79<br><b>Not significant</b> | August<br>407.7<br>695.34<br>1.31<br>17.5<br>1.02<br>19.83<br>Not sig | (P5)<br>(P6)<br>(P7)<br>nificant |  |  |  |  |